Weather data publication on the LOD using SOSA/SSN ontology

Autor: Daniel Boffety, Stephan Bernard, Catherine Roussey, Géraldine André
Přispěvatelé: Technologies et systèmes d'information pour les agrosystèmes (UR TSCF), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Semantic Web – Interoperability, Usability, Applicability
Semantic Web – Interoperability, Usability, Applicability, IOS Press, 2020, 11 (4), pp.581-591. ⟨10.3233/SW-200375⟩
ISSN: 1570-0844
2210-4968
DOI: 10.3233/SW-200375⟩
Popis: International audience; This paper presents an RDF dataset of meteorological measurements. The measurements come from one weather station at the Irstea experimental farm located in Montoldre. The measurements have been made from August 2018 until now. They have been transformed and published as Linked Open Data (LOD). The data schema is based on the new version of the Semantic Sensor Network ontology. This ontology version integrates the Sensor, Observation, Sample, and Actuator pattern. We first present the network of ontologies used to organize the data. Then, the transformation process for publishing the dataset is detailed. To conclude we present some use cases of queries related to Irstea research projects. © 2020 - IOS Press and the authors.
Databáze: OpenAIRE