Weather data publication on the LOD using SOSA/SSN ontology
Autor: | Daniel Boffety, Stephan Bernard, Catherine Roussey, Géraldine André |
---|---|
Přispěvatelé: | Technologies et systèmes d'information pour les agrosystèmes (UR TSCF), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Semantic sensor ontology
Information retrieval observation Computer Networks and Communications Computer science Meteorological observation 02 engineering and technology Ontology (information science) sample Computer Science Applications [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Climate linked data [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] 020204 information systems Weather data 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing and actuator Information Systems Sensor |
Zdroj: | Semantic Web – Interoperability, Usability, Applicability Semantic Web – Interoperability, Usability, Applicability, IOS Press, 2020, 11 (4), pp.581-591. ⟨10.3233/SW-200375⟩ |
ISSN: | 1570-0844 2210-4968 |
DOI: | 10.3233/SW-200375⟩ |
Popis: | International audience; This paper presents an RDF dataset of meteorological measurements. The measurements come from one weather station at the Irstea experimental farm located in Montoldre. The measurements have been made from August 2018 until now. They have been transformed and published as Linked Open Data (LOD). The data schema is based on the new version of the Semantic Sensor Network ontology. This ontology version integrates the Sensor, Observation, Sample, and Actuator pattern. We first present the network of ontologies used to organize the data. Then, the transformation process for publishing the dataset is detailed. To conclude we present some use cases of queries related to Irstea research projects. © 2020 - IOS Press and the authors. |
Databáze: | OpenAIRE |
Externí odkaz: |