On the Milnor number of non-isolated singularities of holomorphic foliations and its topological invariance
Autor: | Arturo Fernández‐Pérez, Gilcione Nonato Costa, Rudy Rosas Bazán |
---|---|
Rok vydání: | 2021 |
Předmět: | |
DOI: | 10.48550/arxiv.2109.00053 |
Popis: | We define the Milnor number -- as the intersection number of two holomorphic sections -- of a one-dimensional holomorphic foliation $\mathscr{F}$ with respect to a compact connected component $C$ of its singular set. Under certain conditions, we prove that the Milnor number of $\mathscr{F}$ on a three-dimensional manifold with respect to $C$ is invariant by $C^1$ topological equivalences. Comment: 17 pages |
Databáze: | OpenAIRE |
Externí odkaz: |