Rap1 GTPases Are Master Regulators of Neural Cell Polarity in the Developing Neocortex
Autor: | Bhavin Shah, Akira Sakakibara, Yaroslav Tsytsyura, Natalia Glyvuk, Daniela Lutter, Jürgen Klingauf, Andreas W. Püschel |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Polarity (physics) Cognitive Neuroscience Neurogenesis Ependymoglial Cells Neocortex GTPase Biology Adherens junction 03 medical and health sciences Cellular and Molecular Neuroscience Mice 0302 clinical medicine Cell Movement Cell polarity medicine Animals Axon Neural cell Neurons Cell Polarity rap1 GTP-Binding Proteins 030104 developmental biology medicine.anatomical_structure nervous system Rap1 Neuroscience Neuroglia 030217 neurology & neurosurgery Signal Transduction |
Zdroj: | Cerebral cortex (New York, N.Y. : 1991). 27(2) |
ISSN: | 1460-2199 |
Popis: | During the development of the mammalian neocortex, the generation of neurons by neural progenitors and their migration to the final position are closely coordinated. The highly polarized radial glial cells (RGCs) serve both as progenitor cells to generate neurons and as support for the migration of these neurons. After their generation, neurons transiently assume a multipolar morphology before they polarize and begin their migration along the RGCs. Here, we show that Rap1 GTPases perform essential functions for cortical organization as master regulators of cell polarity. Conditional deletion of Rap1 GTPases leads to a complete loss of cortical lamination. In RGCs, Rap1 GTPases are required to maintain their polarized organization. In newborn neurons, the loss of Rap1 GTPases prevents the formation of axons and leading processes and thereby interferes with radial migration. Taken together, the loss of RGC and neuronal polarity results in the disruption of cortical organization. |
Databáze: | OpenAIRE |
Externí odkaz: |