Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells

Autor: Mohammed Khurshed, Elia Prades-Sagarra, Sarah Saleh, Peter Sminia, Johanna W. Wilmink, Remco J. Molenaar, Hans Crezee, Cornelis J. F. van Noorden
Přispěvatelé: Graduate School, Pathology, CCA - Cancer biology and immunology, AGEM - Amsterdam Gastroenterology Endocrinology Metabolism, Oncology, Radiotherapy, Radiation Oncology
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Cancers, 14(24):6228. Multidisciplinary Digital Publishing Institute (MDPI)
Cancers; Volume 14; Issue 24; Pages: 6228
Khurshed, M, Prades-Sagarra, E, Saleh, S, Sminia, P, Wilmink, J W, Molenaar, R J, Crezee, H & van Noorden, C J F 2022, ' Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells ', Cancers, vol. 14, no. 24, 6228 . https://doi.org/10.3390/cancers14246228
ISSN: 2072-6694
DOI: 10.3390/cancers14246228
Popis: Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5′-diphosphate–ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities.
Databáze: OpenAIRE