Extended corner symmetry, charge bracket and Einstein's equations
Autor: | Daniele Pranzetti, Laurent Freidel, Roberto Oliveri, Simone Speziale |
---|---|
Přispěvatelé: | Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2021 |
Předmět: |
High Energy Physics - Theory
Nuclear and High Energy Physics [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] anomaly FOS: Physical sciences QC770-798 General Relativity and Quantum Cosmology (gr-qc) phase space: covariance 01 natural sciences Projection (linear algebra) General Relativity and Quantum Cosmology symmetry: algebra Nuclear and particle physics. Atomic energy. Radioactivity 0103 physical sciences Models of Quantum Gravity surface Covariant transformation 010306 general physics Mathematical Physics Mathematical physics Physics 010308 nuclear & particles physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] Space-Time Symmetries Equations of motion Charge (physics) Mathematical Physics (math-ph) Symmetry (physics) Space-Time Symmetries Classical Theories of Gravity Models of Quantum Gravity field equations: gravitation flux Bracket (mathematics) High Energy Physics - Theory (hep-th) Classical Theories of Gravity [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] field theory: vector Vector field holography Anomaly (physics) Einstein equation symmetry: translation |
Zdroj: | Journal of High Energy Physics Journal of High Energy Physics, Vol 2021, Iss 9, Pp 1-38 (2021) Journal of High Energy Physics, 2021, 09, pp.083. ⟨10.1007/JHEP09(2021)083⟩ JHEP JHEP, 2021, 09, pp.083. ⟨10.1007/JHEP09(2021)083⟩ |
ISSN: | 1126-6708 1029-8479 |
DOI: | 10.1007/JHEP09(2021)083⟩ |
Popis: | We develop the covariant phase space formalism allowing for non-vanishing flux, anomalies and field dependence in the vector field generators. We construct a charge bracket that generalizes the one introduced by Barnich and Troessaert and includes contributions from the Lagrangian and its anomaly. This bracket is uniquely determined by the choice of Lagrangian representative of the theory. We then extend the notion of corner symmetry algebra to include the surface translation symmetries and prove that the charge bracket provides a canonical representation of the extended corner symmetry algebra. This representation property is shown to be equivalent to the projection of the gravitational equations of motion on the corner, providing us with an encoding of the bulk dynamics in a locally holographic manner. Comment: 27 pages + Appendix, 2 figures; v3 published version |
Databáze: | OpenAIRE |
Externí odkaz: |