Extended corner symmetry, charge bracket and Einstein's equations

Autor: Daniele Pranzetti, Laurent Freidel, Roberto Oliveri, Simone Speziale
Přispěvatelé: Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2021
Předmět:
High Energy Physics - Theory
Nuclear and High Energy Physics
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
anomaly
FOS: Physical sciences
QC770-798
General Relativity and Quantum Cosmology (gr-qc)
phase space: covariance
01 natural sciences
Projection (linear algebra)
General Relativity and Quantum Cosmology
symmetry: algebra
Nuclear and particle physics. Atomic energy. Radioactivity
0103 physical sciences
Models of Quantum Gravity
surface
Covariant transformation
010306 general physics
Mathematical Physics
Mathematical physics
Physics
010308 nuclear & particles physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Space-Time Symmetries
Equations of motion
Charge (physics)
Mathematical Physics (math-ph)
Symmetry (physics)
Space-Time Symmetries
Classical Theories of Gravity
Models of Quantum Gravity

field equations: gravitation
flux
Bracket (mathematics)
High Energy Physics - Theory (hep-th)
Classical Theories of Gravity
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
field theory: vector
Vector field
holography
Anomaly (physics)
Einstein equation
symmetry: translation
Zdroj: Journal of High Energy Physics
Journal of High Energy Physics, Vol 2021, Iss 9, Pp 1-38 (2021)
Journal of High Energy Physics, 2021, 09, pp.083. ⟨10.1007/JHEP09(2021)083⟩
JHEP
JHEP, 2021, 09, pp.083. ⟨10.1007/JHEP09(2021)083⟩
ISSN: 1126-6708
1029-8479
DOI: 10.1007/JHEP09(2021)083⟩
Popis: We develop the covariant phase space formalism allowing for non-vanishing flux, anomalies and field dependence in the vector field generators. We construct a charge bracket that generalizes the one introduced by Barnich and Troessaert and includes contributions from the Lagrangian and its anomaly. This bracket is uniquely determined by the choice of Lagrangian representative of the theory. We then extend the notion of corner symmetry algebra to include the surface translation symmetries and prove that the charge bracket provides a canonical representation of the extended corner symmetry algebra. This representation property is shown to be equivalent to the projection of the gravitational equations of motion on the corner, providing us with an encoding of the bulk dynamics in a locally holographic manner.
Comment: 27 pages + Appendix, 2 figures; v3 published version
Databáze: OpenAIRE