Probing quantum effects with classical stochastic analogs

Autor: Laurent Mertz, Rémi Goerlich, Cyriaque Genet, Paul-Antoine Hervieux, Giovanni Manfredi
Přispěvatelé: Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA), NYU Shanghai, Institut de Science et d'ingénierie supramoléculaires (ISIS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Physical Review Research
Physical Review Research, American Physical Society, 2021, 3 (3), ⟨10.1103/PhysRevResearch.3.033203⟩
ISSN: 2643-1564
DOI: 10.1103/PhysRevResearch.3.033203⟩
Popis: We propose a method to construct a classical analog of an open quantum system, namely, a single quantum particle confined in a potential well and immersed in a thermal bath. The classical analog is made out of a collection of identical wells where classical particles of mass $m$ are trapped. The distribution $n(x,t)$ of the classical positions is used to reconstruct the quantum Bohm potential ${V}_{\mathrm{Bohm}}=\ensuremath{-}\frac{{\ensuremath{\hbar}}^{2}}{2m}\frac{\mathrm{\ensuremath{\Delta}}\sqrt{n}}{\sqrt{n}}$, which in turn acts on the shape of the potential wells. As a result, the classical particles experience an effective ``quantum'' force. This protocol is tested with numerical simulations using single- and double-well potentials, evidencing typical quantum effects such as long-lasting correlations and quantum tunneling. For harmonic confinement, the analogy is implemented experimentally using micron-sized dielectric beads optically trapped by a laser beam.
Databáze: OpenAIRE