The Thermal Breadth ofNylanderia fulva(Hymenoptera: Formicidae) Is Narrower Than That ofSolenopsis invictaat Three Thermal Ramping Rates: 1.0, 0.12, and 0.06°C min−1
Autor: | F. M. Oi, Daniel A. Hahn, M. T. Bentley |
---|---|
Rok vydání: | 2016 |
Předmět: |
0106 biological sciences
Ecology biology Ants Nylanderia Temperature Introduced species Hymenoptera Body size biology.organism_classification 010603 evolutionary biology 01 natural sciences Red imported fire ant 010602 entomology Species Specificity Insect Science Florida Animals Body Size Introduced Species Ecology Evolution Behavior and Systematics |
Zdroj: | Environmental Entomology. 45:1058-1062 |
ISSN: | 1938-2936 0046-225X |
DOI: | 10.1093/ee/nvw050 |
Popis: | Determining the upper (CTmax) and lower (CTmin) critical thermal limits of invasive ants provides insight into how temperature could shape their distribution, seasonality, and daily activity. Understanding the potential distribution of invasive ants is imperative to improving quarantine and management efforts. Nylanderia fulva (Mayr) (tawny crazy ant) and Solenopsis invicta (Buren) (red imported fire ant) are invasive ants that are established throughout the southeastern United States. Recent studies have found that body size and thermal ramping rate can affect the estimation of critical thermal limits. However, the effects of both variables and their interactions on the thermal limits of N. fulva and S. invicta have not previously been described. Thus, we evaluated the impacts of body size and ramping rate on the critical thermal limits of N. fulva and S. invicta Overall, N. fulva had a narrower thermal breadth than S. invicta (Nf CTmin = 7.3°C and Nf CTmax = 41.3°C vs. Si CTmin = 4.1°C and Si CTmax = 45.3°C). For both species, slower ramping rates resulted in lower CTmax values and ants with smaller head capsules had a narrower thermal breadth than ants with larger head capsules. These data improve our understanding of the critical thermal limits of both species and could be useful for developing predictive models that estimate the future spread of these invasive ants in nonnative ranges. |
Databáze: | OpenAIRE |
Externí odkaz: |