Basolateral membrane Cl- and K+ conductances of the dark-adapted chick retinal pigment epithelium
Autor: | R. P. Gallemore, R H Steinberg, S. Fujii, E Hernandez, R Tayyanipour |
---|---|
Rok vydání: | 1993 |
Předmět: |
Potassium Channels
Physiology Dark Adaptation 4 4'-Diisothiocyanostilbene-2 2'-Disulfonic Acid In Vitro Techniques Diffusion chemistry.chemical_compound Chloride Channels Animals Channel blocker Pigment Epithelium of Eye Epithelial polarity Membrane potential Membranes General Neuroscience Depolarization Apical membrane Electrophysiology Membrane chemistry DIDS Barium Paracellular transport Biophysics Chickens Microelectrodes Photic Stimulation |
Zdroj: | Journal of neurophysiology. 70(4) |
ISSN: | 0022-3077 |
Popis: | 1. We characterized the basolateral membrane Cl- and K+ conductances of the dark-adapted chick neural retina-retinal pigment epithelium (RPE)-choroid preparation. Conventional microelectrodes were used to measure apical (V(ap)) and basolateral (Vba) membrane voltage, and double-barreled Cl- and K+ selective microelectrodes were used to follow the time course and magnitude of ion concentration changes outside the basolateral (basal) membrane. 2. In response to a fivefold decrease in basal [Cl-]o, Vba rapidly depolarized by 6.4 +/- 0.7 (SE) mV, and the apparent resistance of the basolateral membrane (Rba) increased. The Cl- channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) suppressed the Vba depolarization by 40% and blocked the Rba increase. Estimates of the relative Cl- conductance (transference number, TCl) from the DIDS-sensitive component of the Cl- diffusion potential gave an average value for TCl of 0.22 +/- 0.03. 3. Further evidence for a Cl- conductance was obtained by measuring changes in intracellular Cl- activity (aCli) induced by transtissue current. Depolarizing Vba elevated aiCl, whereas hyperpolarizing Vba had the opposite effect, consistent with conductive Cl- movement across the basal membrane. TCl estimated from these data averaged 0.23 +/- 0.02. 4. In response to a sixfold increase in basal [K+]o, Vba depolarized 6.1 +/- 0.8 mV. The amplitude of this K+ diffusion potential was inhibited 44 and 67% by 5 and 10 mM Ba2+, respectively. TK was estimated to be 0.61 +/- 0.05. 5. The rapid c-wave membrane hyperpolarizations in response to the light-evoked decrease in subretinal [K+]o were used to calculate the equivalent resistances of the apical membrane (R(ap)), basolateral membrane (Rba), and the paracellular shunt pathway (Rs). They were 152 +/- 10, 615 +/- 38, and 138 +/- 7 omega.cm2 (n = 11 tissues), respectively. From these data the equivalent electromotive force for the basal (Eba) and apical (Eap) membranes were estimated to be -45 +/- 2 and -77 +/- 1 mV, respectively. This estimate of Eba is in the range of that predicted from our estimates of TCl and TK, indicating that, in the dark-adapted chick retina, the resting conductance of the basal membrane can largely be accounted for by the Cl- and K+ conductances described here. |
Databáze: | OpenAIRE |
Externí odkaz: |