Engineering Smut Resistance in Maize by Site-Directed Mutagenesis of LIPOXYGENASE 3
Autor: | Martin Becker, Krishna Mohan Pathi, Ruben Betz, Philipp Rink, Armin Djamei, Indira Saado, Nagaveni Budhagatapalli, Jochen Kumlehn, Stefan Hiekel |
---|---|
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
0301 basic medicine Transposable element Ustilago Mutant Plant Science lcsh:Plant culture 01 natural sciences Crop 03 medical and health sciences genome editing lcsh:SB1-1110 Cas9 Pathogen Gene Genetics biology Host (biology) targeted mutagenesis food and beverages biology.organism_classification guide RNA corn 030104 developmental biology CRISPR Smut 010606 plant biology & botany |
Zdroj: | Frontiers in Plant Science, Vol 11 (2020) |
ISSN: | 1664-462X |
DOI: | 10.3389/fpls.2020.543895 |
Popis: | Biotic stresses caused by microbial pathogens impair crop yield and quality if not restricted by expensive and often ecologically problematic pesticides. For a sustainable agriculture of tomorrow, breeding or engineering of pathogen-resistant crop varieties is therefore a major cornerstone. Maize is one of the four most important cereal crops in the world. The biotrophic fungal pathogen Ustilago maydis causes galls on all aerial parts of the maize plant. Biotrophic pathogens like U. maydis co-evolved with their host plant and depend during their life cycle on successful manipulation of the host’s cellular machinery. Therefore, removing or altering plant susceptibility genes is an effective and usually durable way to obtain resistance in plants. Transcriptional time course experiments in U. maydis-infected maize revealed numerous maize genes being upregulated upon establishment of biotrophy. Among these genes is the maize LIPOXYGENASE 3 (LOX3) previously shown to be a susceptibility factor for other fungal genera as well. Aiming to engineer durable resistance in maize against U. maydis and possibly other pathogens, we took a Cas endonuclease technology approach to generate loss of function mutations in LOX3. lox3 maize mutant plants react with an enhanced PAMP-triggered ROS burst implicating an enhanced defense response. Based on visual assessment of disease symptoms and quantification of relative fungal biomass, homozygous lox3 mutant plants exposed to U. maydis show significantly decreased susceptibility. U. maydis infection assays using a transposon mutant lox3 maize line further substantiated that LOX3 is a susceptibility factor for this important maize pathogen. |
Databáze: | OpenAIRE |
Externí odkaz: |