New regime of droplet generation in a T-shape microfluidic junction

Autor: Nathalie Tarchichi, Jean-François Manceau, Franck Chollet
Přispěvatelé: Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), MicroMachines Centre (MMC), Nanyang Technological University [Singapour], Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Microfluidics and Nanofluidics
Microfluidics and Nanofluidics, Springer Verlag, 2013, 14 (1-2), pp.45-51. ⟨10.1007/s10404-012-1021-8⟩
Microfluidics and Nanofluidics, 2013, 14 (1-2), pp.45-51
ISSN: 1613-4982
1613-4990
DOI: 10.1007/s10404-012-1021-8⟩
Popis: We present an experimental study of a new regime of monodisperse micro-droplet generation that we named the balloon regime. A dispersion of oil in water in a T-junction microfluidic system was studied. Several microfluidic devices having different cross-sections of the continuous and the dispersed phases micro-channels were tested. This new regime appears only for low- dispersed phase velocity. The micro-droplet size is mainly related to the geometry of the T-junction micro-channels especially its width and depth, and independent of the continuous and dispersed phases velocities. In our experiments, the velocities of the continuous and the dispersed phases $$\overline v_{\rm c}$$ and $$\overline v_{\rm d}$$ respectively, have been varied in a wide range: $$\overline v_{\rm c}$$ from 0.5 to 500 mm/s, and $$\overline v_{\rm d}$$ from 0.01 to 30 mm/s. We show that the continuous phase only controls the micro-droplet density, while the dispersed phase linearly changes the frequency of the micro-droplet generation. Another particularity of the present regime, which differentiates it from all other known regimes, is that the micro-droplet retains its circular shape throughout its formation at the T junction, and undergoes no deformation due to the drag forces. We propose a mechanism to explain the formation of micro-droplets in this new regime.
Databáze: OpenAIRE