How Hydrogen and Oxygen Vapor Affect the Tribochemistry of Silicon- and Oxygen-Containing Hydrogenated Amorphous Carbon under Low-Friction Conditions: A Study Combining X-ray Absorption Spectromicroscopy and Data Science Methods

Autor: Komlavi D. Koshigan, Mark Hilary Van Benthem, Robert W. Carpick, J. B. McClimon, James Hilbert, Filippo Mangolini, James Anthony Ohlhausen, Julien Fontaine
Přispěvatelé: The University of Texas at Austin, Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne-Centre National de la Recherche Scientifique (CNRS), Sandia National Laboratories [Albuquerque] (SNL), Sandia National Laboratories - Corporation, Department of Mechanical Engineering and Applied Mechanics [University of Pennsylvania] (MEAM), School of Engineering and Applied Science [University of Pennsylvania], University of Pennsylvania [Philadelphia]-University of Pennsylvania [Philadelphia]
Rok vydání: 2021
Předmět:
Zdroj: ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2021, 13 (10), pp.12610-12621. ⟨10.1021/acsami.1c00090⟩
ISSN: 1944-8252
1944-8244
DOI: 10.1021/acsami.1c00090⟩
Popis: The incorporation of silicon and oxygen into hydrogenated amorphous carbon (a-C:H) is an effective approach to decrease the dependence of the tribological properties of a-C:H on the environment. Here, we evaluate the effect of hydrogen and oxygen partial pressures in vacuum on the tribological response of steel pins sliding against films consisting of silicon- and oxygen-containing a-C:H (a-C:H:Si:O). Experiments are conducted in the low-friction/low-wear regime, where sufficient gas pressure prevents steel from adhering to the a-C:H:Si:O, with the velocity accommodation mode being interfacial sliding between the tribotrack formed in the a-C:H:Si:O film and the carbonaceous tribofilm that is formed on the countersurface. The experiments indicated a decrease (increase) in friction and wear with the hydrogen (oxygen) pressure (hydrogen pressures between 50 and 2000 mbar; oxygen pressures between 10 and 1000 mbar). Characterization by X-ray photoelectron and absorption spectroscopies indicated the occurrence of tribologically induced rehybridization of carbon-carbon bonds from sp
Databáze: OpenAIRE