Carrollian Physics at the Black Hole Horizon
Autor: | Charles Marteau, Laura Donnay |
---|---|
Přispěvatelé: | Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
High Energy Physics - Theory
Angular momentum Physics and Astronomy (miscellaneous) FOS: Physical sciences General Relativity and Quantum Cosmology (gr-qc) Carroll group near-horizon geometry phase space: covariance black hole: horizon angular momentum 01 natural sciences General Relativity and Quantum Cosmology 0103 physical sciences charge: conservation law Covariant transformation horizon: geometry Tensor 010306 general physics Mathematical physics Physics Conservation law 010308 nuclear & particles physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] Horizon Conserved quantity black hole symmetries Settore FIS/02 - Fisica Teorica Modelli e Metodi Matematici Black hole High Energy Physics - Theory (hep-th) vector: Killing tensor: energy-momentum [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] field theory: vector Vector field energy-momentum: conservation law conservation laws black hole: geometry |
Zdroj: | Class.Quant.Grav. Class.Quant.Grav., 2019, 36 (16), pp.165002. ⟨10.1088/1361-6382/ab2fd5⟩ Classical and Quantum Gravity Classical and Quantum Gravity, IOP Publishing, 2019, 36 (16), pp.165002. ⟨10.1088/1361-6382/ab2fd5⟩ |
ISSN: | 0264-9381 1361-6382 |
DOI: | 10.1088/1361-6382/ab2fd5⟩ |
Popis: | We show that the geometry of a black hole horizon can be described as a Carrollian geometry emerging from an ultra-relativistic limit where the near-horizon radial coordinate plays the role of a virtual velocity of light tending to zero. We prove that the laws governing the dynamics of a black hole horizon, the null Raychaudhuri and Damour equations, are Carrollian conservation laws obtained by taking the ultra-relativistic limit of the conservation of an energy-momentum tensor; we also discuss their physical interpretation. We show that the vector fields preserving the Carrollian geometry of the horizon, dubbed Carrollian Killing vectors, include BMS-like supertranslations and superrotations and that they have non-trivial associated conserved charges on the horizon. In particular, we build a generalization of the angular momentum to the case of non-stationary black holes. Finally, we discuss the relation of these conserved quantities to the infinite tower of charges of the covariant phase space formalism. 20 pages, 1 figure. Corrected typos |
Databáze: | OpenAIRE |
Externí odkaz: |