Regulating retrotransposon activity through the use of alternative transcription start sites

Autor: Mette Boyd, Catherine Schurra, Jenna Persson, Benoit Arcangioli, Agata Smialowska, Jette Bornholdt, Babett Steglich, Robin Andersson, Albin Sandelin, Karl Ekwall, Olaf Nielsen
Přispěvatelé: Karolinska Institutet [Stockholm], University of Copenhagen = Københavns Universitet (UCPH), Dynamique du Génome - Dynamics of the genome, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Knut and Alice Wallenberg FoundationSwedish Research CouncilCentre for BiosciencesSchool of Technology and HealthKungliga Tekniska Högskolan, Huddinge, SwedenSwedish Cancer SocietyInstitut Pasteur, France ANR‐06‐BLAN‐0271Novo Nordisk FoundationLundbeck FoundationERC 638273, ANR-06-BLAN-0271,Rep-Rec,Recombination-dependent processes upon natural replication fork arrest in fission yeast(2006), European Project: 638273,H2020,ERC-2014-STG,SCORA(2015), University of Copenhagen = Københavns Universitet (KU), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2016
Předmět:
0301 basic medicine
genetic structures
Retrotransposon
MESH: Base Sequence
Chromatin
Epigenetics
Genomics & Functional Genomics

Biochemistry
chromatin remodeling
Transcription (biology)
Transcriptional regulation
transcriptional regulation
MESH: Stress
Physiological

Genetics
Articles
MESH: Gene Expression Regulation
[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
Chromatin
Long terminal repeat
Nucleosomes
retrotransposable elements
Phenotype
MESH: Terminal Repeat Sequences
Epigenetics
MESH: Transcription Initiation Site
Transcription Initiation Site
Transcription
Transcriptional Activation
MESH: Mutation
Retroelements
Biology
MESH: Phenotype
Models
Biological

Catalysis
Article
Chromatin remodeling
MESH: Chromatin
03 medical and health sciences
MESH: Retroelements
Stress
Physiological

MESH: Nucleosomes
Nucleosome
Molecular Biology
Gene
Base Sequence
Terminal Repeat Sequences
MESH: Chromatin Assembly and Disassembly
MESH: Models
Biological

Chromatin Assembly and Disassembly
MESH: Catalysis
transcriptional regulation Subject Categories Chromatin
Genomics & Functional Genomics
030104 developmental biology
Gene Expression Regulation
Mutation
MESH: Transcriptional Activation
Zdroj: EMBO Reports
EMBO Reports, 2016, 17 (5), pp.753-768. ⟨10.15252/embr.201541866⟩
Persson, J, Steglich, B, Smialowska, A, Boyd, M, Lange, J B, Andersson, R, Schurra, C, Arcangioli, B, Sandelin, A G, Nielsen, O & Ekwall, K 2016, ' Regulating retrotransposon activity through the use of alternative transcription start sites ', E M B O Reports, vol. 17, no. 5, pp. 753-768 . https://doi.org/10.15252/embr.201541866
ResearcherID
EMBO Reports, EMBO Press, 2016, 17 (5), pp.753-768. ⟨10.15252/embr.201541866⟩
EMBO reports
ISSN: 1469-3178
1469-221X
DOI: 10.15252/embr.201541866
Popis: International audience; Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome.
Databáze: OpenAIRE