Regulating retrotransposon activity through the use of alternative transcription start sites
Autor: | Mette Boyd, Catherine Schurra, Jenna Persson, Benoit Arcangioli, Agata Smialowska, Jette Bornholdt, Babett Steglich, Robin Andersson, Albin Sandelin, Karl Ekwall, Olaf Nielsen |
---|---|
Přispěvatelé: | Karolinska Institutet [Stockholm], University of Copenhagen = Københavns Universitet (UCPH), Dynamique du Génome - Dynamics of the genome, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Knut and Alice Wallenberg FoundationSwedish Research CouncilCentre for BiosciencesSchool of Technology and HealthKungliga Tekniska Högskolan, Huddinge, SwedenSwedish Cancer SocietyInstitut Pasteur, France ANR‐06‐BLAN‐0271Novo Nordisk FoundationLundbeck FoundationERC 638273, ANR-06-BLAN-0271,Rep-Rec,Recombination-dependent processes upon natural replication fork arrest in fission yeast(2006), European Project: 638273,H2020,ERC-2014-STG,SCORA(2015), University of Copenhagen = Københavns Universitet (KU), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
genetic structures Retrotransposon MESH: Base Sequence Chromatin Epigenetics Genomics & Functional Genomics Biochemistry chromatin remodeling Transcription (biology) Transcriptional regulation transcriptional regulation MESH: Stress Physiological Genetics Articles MESH: Gene Expression Regulation [SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] Chromatin Long terminal repeat Nucleosomes retrotransposable elements Phenotype MESH: Terminal Repeat Sequences Epigenetics MESH: Transcription Initiation Site Transcription Initiation Site Transcription Transcriptional Activation MESH: Mutation Retroelements Biology MESH: Phenotype Models Biological Catalysis Article Chromatin remodeling MESH: Chromatin 03 medical and health sciences MESH: Retroelements Stress Physiological MESH: Nucleosomes Nucleosome Molecular Biology Gene Base Sequence Terminal Repeat Sequences MESH: Chromatin Assembly and Disassembly MESH: Models Biological Chromatin Assembly and Disassembly MESH: Catalysis transcriptional regulation Subject Categories Chromatin Genomics & Functional Genomics 030104 developmental biology Gene Expression Regulation Mutation MESH: Transcriptional Activation |
Zdroj: | EMBO Reports EMBO Reports, 2016, 17 (5), pp.753-768. ⟨10.15252/embr.201541866⟩ Persson, J, Steglich, B, Smialowska, A, Boyd, M, Lange, J B, Andersson, R, Schurra, C, Arcangioli, B, Sandelin, A G, Nielsen, O & Ekwall, K 2016, ' Regulating retrotransposon activity through the use of alternative transcription start sites ', E M B O Reports, vol. 17, no. 5, pp. 753-768 . https://doi.org/10.15252/embr.201541866 ResearcherID EMBO Reports, EMBO Press, 2016, 17 (5), pp.753-768. ⟨10.15252/embr.201541866⟩ EMBO reports |
ISSN: | 1469-3178 1469-221X |
DOI: | 10.15252/embr.201541866 |
Popis: | International audience; Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome. |
Databáze: | OpenAIRE |
Externí odkaz: |