Configural analysis of oscillating progression

Autor: Wolfgang Wiedermann, Stefan von Weber, Alexander von Eye
Rok vydání: 2021
Předmět:
Zdroj: Journal for Person-Oriented Research
Journal for Person-Oriented Research, Vol 7, Iss 1 (2021)
ISSN: 2003-0177
2002-0244
DOI: 10.17505/jpor.2021.23448
Popis: Oscillating series of scores can be approximated with locally optimized smoothing functions. In this article, we describe how such series can be approximated with locally estimated (loess) smoothing, and how Configural Frequency Analysis (CFA) can be used to evaluate and interpret results. Loess functions are often hard to describe because they cannot be represented by just one function that has interpretable parameters. In this article, we suggest that specification of the CFA base model be based on the width of the window that is used for local curve optimization, the weight given to data points in the neighborhood of the approximated one, and by the function that is used to locally approximate observed data. CFA types indicate that more cases were found than expected from the local optimization model. CFA antitypes indicate that fewer cases were found. In a real-world data example, the development of Covid-19 diagnoses in France is analyzed for the beginning period of the pandemic.
Databáze: OpenAIRE