Towards a Many-Body Treatment of Hamiltonian Lattice SU(N) Gauge Theory
Autor: | R.F. Bishop, Niels R. Walet, N.E. Ligterink |
---|---|
Rok vydání: | 2000 |
Předmět: |
High Energy Physics - Theory
Physics High Energy Physics::Lattice High Energy Physics - Lattice (hep-lat) General Physics and Astronomy FOS: Physical sciences Physics and Astronomy(all) 2-DIMENSIONAL QCD FIELD-THEORY REPRESENTATION Symbolic method Many body High Energy Physics - Phenomenology symbols.namesake High Energy Physics - Lattice Hamiltonian lattice gauge theory High Energy Physics - Phenomenology (hep-ph) High Energy Physics - Theory (hep-th) Lattice gauge theory Lattice (order) symbols Gauge theory Hamiltonian (quantum mechanics) Eigenvalues and eigenvectors Mathematical physics |
Zdroj: | Ligterink, N E, Walet, N R & Bishop, R F 2000, ' Toward a many-body treatment of Hamiltonian lattice SU(N) gauge theory ', Annals of Physics, vol. 284, pp. 215-262 . https://doi.org/10.1006/aphy.2000.6070 |
DOI: | 10.48550/arxiv.hep-lat/0001028 |
Popis: | We develop a consistent approach to Hamiltonian lattice gauge theory, using the maximal-tree gauge. The various constraints are discussed and implemented. An independent and complete set of variables for the colourless sector is determined. A general scheme to construct the eigenstates of the electric energy operator using a symbolic method is described. It is shown how the one-plaquette problem can be mapped onto a N-fermion problem. Explicit solutions for U(1), SU(2), SU(3), SU(4), and SU(5) lattice gauge theory are shown. Comment: 39 pages, 12 figures, and 2 tables |
Databáze: | OpenAIRE |
Externí odkaz: |