SaccharomycesIDentifier, SID: strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns
Autor: | Jean Luc Legras, Davide Albanese, Irene Stefanini, Maddalena Sordo, Carlotta De Filippo, Duccio Cavalieri, Claudio Donati |
---|---|
Přispěvatelé: | Computational Biology Unit (BCCS), University of Bergen (UIB), Sciences Pour l'Oenologie (SPO), Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD [Nouvelle-Calédonie])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Integrated Programme Agreement 'METAFOODLABS' - Autonomous Province of Trento [S116/2012/537723], research office of the Autonomous Province of Trento, Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD [Nouvelle-Calédonie])-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Computational Biology Unit [Bergen] (CBU), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), University of Bergen (UiB), Université Montpellier 1 (UM1)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
microsatellite Genotype In silico Saccharomyces cerevisiae lcsh:Medicine Biology yeast brewer s Article microsatellites 03 medical and health sciences DNA Fungal Metagenomics Microsatellite Repeats Software séquençage vin [SDV.BV]Life Sciences [q-bio]/Vegetal Biology wine lcsh:Science Winemaking Genetics Vegetal Biology Multidisciplinary lcsh:R QK Fungal genetics food and beverages vinification DNA biology.organism_classification Yeast Fungal 030104 developmental biology Microsatellite lcsh:Q Saccharomyces cerevisiae microsatellite analysis Settore BIO/19 - MICROBIOLOGIA GENERALE Biologie végétale |
Zdroj: | Scientific reports (Nature Publishing Group) 7 (2017). doi:10.1038/s41598-017-15729-3 info:cnr-pdr/source/autori:Stefanini, Irene; Albanese, Davide; Sordo, Maddalena; Legras, Jean-Luc; De Filippo, Carlotta; Cavalieri, Duccio; Donati, Claudio/titolo:SaccharomycesIDentifier, SID: strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns/doi:10.1038%2Fs41598-017-15729-3/rivista:Scientific reports (Nature Publishing Group)/anno:2017/pagina_da:/pagina_a:/intervallo_pagine:/volume:7 Scientific Reports Scientific Reports, Nature Publishing Group, 2017, 7 (1), 10 p. ⟨10.1038/s41598-017-15729-3⟩ Scientific Reports 1 (7), 10 p.. (2017) Scientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-017-15729-3 |
Popis: | Saccharomyces cerevisiae is a common yeast with several applications, among which the most ancient is winemaking. Because individuals belonging to this species show a wide genetic and phenotypic variability, the possibility to identify the strains driving fermentation is pivotal when aiming at stable and palatable products. Metagenomic sequencing is increasingly used to decipher the fungal populations present in complex samples such as musts. However, it does not provide information at the strain level. Microsatellites are commonly used to describe the genotype of single strains. Here we developed a population-level microsatellite profiling approach, SID (Saccharomyces cerevisiae IDentifier), to identify the strains present in complex environmental samples. We optimized and assessed the performances of the analytical procedure on patterns generated in silico by computationally pooling Saccharomyces cerevisiae microsatellite profiles, and on samples obtained by pooling DNA of different strains, proving its ability to characterize real samples of grape wine fermentations. SID showed clear differences among S. cerevisiae populations in grape fermentation samples, identifying strains that are likely composing the populations and highlighting the impact of the inoculation of selected exogenous strains on natural strains. This tool can be successfully exploited to identify S. cerevisiae strains in any kind of complex samples. |
Databáze: | OpenAIRE |
Externí odkaz: |