Universal signatures of Dirac fermions in entanglement and charge fluctuations

Autor: Anna Hackenbroich, Valentin Crépel, Nicolas Regnault, Benoit Estienne
Přispěvatelé: Théorie de la Matière Condensée, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Physical Review B
Physical Review B, American Physical Society, 2021, 103 (23), pp.235108. ⟨10.1103/PhysRevB.103.235108⟩
ISSN: 2469-9950
2469-9969
Popis: We investigate the entanglement entropy (EE) and charge fluctuations in models where the low energy physics is governed by massless Dirac fermions. We focus on the response to flux insertion which, for the EE, is widely assumed to be universal, \emph{i.e.}, independent of the microscopic details. We provide an analytical derivation of the EE and charge fluctuations for the seminal example of graphene, using the dimensional reduction of its tight-binding model to the one-dimensional Su-Schrieffer-Heeger model. Our asymptotic expression for the EE matches the conformal field theory prediction. We show that the charge variance has the same asymptotic behavior, up to a constant prefactor. To check the validity of universality arguments, we numerically consider several models, with different geometries and number of Dirac cones, and either for strictly two-dimensional models or for gapless surface mode of three-dimensional topological insulators. We also show that the flux response does not depend on the entangling surface geometry as long as it encloses the flux. Finally we consider the universal corner contributions to the EE. We show that in the presence of corners, the Kitaev-Preskill subtraction scheme provides non-universal, geometry dependent results.
Comment: Accepted in PRB
Databáze: OpenAIRE