ReactiveML, ten years later

Autor: Cédric Pasteur, Louis Mandel, Marc Pouzet
Přispěvatelé: IBM Thomas J. Watson Research Center, IBM, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL), Parallélisme de Kahn Synchrone (Parkas ), Département d'informatique de l'École normale supérieure (DI-ENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Parallélisme de Kahn Synchrone ( Parkas), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Université Pierre et Marie Curie - Paris 6 (UPMC), Département d'informatique - ENS Paris (DI-ENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria Paris-Rocquencourt, Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département d'informatique - ENS Paris (DI-ENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming (PPDP'15)
17th International Symposium on Principles and Practice of Declarative Programming (PPDP'15)
17th International Symposium on Principles and Practice of Declarative Programming (PPDP'15), Jul 2015, Siena, Italy. pp.6-17, ⟨10.1145/2790449.2790509⟩
PPDP
DOI: 10.1145/2790449.2790509⟩
Popis: International audience; Ten years ago we introduced ReactiveML, an extension of a strict ML language with synchronous parallelismàparallelism`parallelismà la Esterel to program reactive applications. Our purpose was to demonstrate that synchronous language principles, originally invented and used for critical real-time control software, would integrate well with ML and prove useful in a wider context: reactive applications with complex data structures and sequential algorithms, organized as a dynamically evolving set of tightly synchronized parallel tasks. While all ReactiveML programs presented at PPDP'05 still compile, the language has evolved continuously to incorporate novel programming constructs, compilation techniques and dedicated static analyses. ReactiveML has been used for applications that we never anticipated: the simulation of large-scale ad-hoc and sensor networks, an interactive debugger, and interactive mixed music. These applications were only possible due to the efficient compilation of ReactiveML into sequential code, which we present here for the first time. We also present a parallel implementation that uses work-stealing techniques through shared memory. Finally, we give a retrospective view on ReactiveML over the past ten years.
Databáze: OpenAIRE