Ulam’s stability for some linear conformable fractional differential equations
Autor: | Jiale Sheng, Sen Wang, Wei Jiang, Rui Li |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Mathematics::Functional Analysis
Algebra and Number Theory Partial differential equation Laplace transform Mathematics::Operator Algebras Applied Mathematics lcsh:Mathematics Mathematical analysis Ode Conformable fractional Laplace transform Conformable fractional derivative Conformable matrix lcsh:QA1-939 Stability (probability) Fractional calculus Nonlinear Sciences::Chaotic Dynamics Linear differential equation Ordinary differential equation Ulam–Hyers and Ulam–Hyers–Rassias stability Analysis Linear differential equations Mathematics |
Zdroj: | Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-18 (2020) |
ISSN: | 1687-1847 |
DOI: | 10.1186/s13662-020-02672-3 |
Popis: | In this paper, by introducing the concepts of Ulam type stability for ODEs into the equations involving conformable fractional derivative, we utilize the technique of conformable fractional Laplace transform to investigate the Ulam–Hyers and Ulam–Hyers–Rassias stability for several kinds of linear differential equations in the frame of conformable fractional derivative. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |