Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential
Autor: | Zegga Kaddour |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Volume: 14, Issue: 1 157-166 International Electronic Journal of Geometry |
ISSN: | 1307-5624 |
Popis: | In this note we characterize the f-harmonic maps and bi-f-harmonic maps with potential.We provethat every bi-f-harmonic map with potential from complete Riemannian manifold, satisfying someconditions is a f-harmonic map with potential. In this note, we characterize the $f$-harmonic maps and bi-$f$-harmonic maps with potential. We prove that every bi-$f$-harmonic map with potential from complete Riemannian manifold, satisfying some conditions is a $f$-harmonic map with potential. More, we study the case of conformal maps between equidimensional manifolds. |
Databáze: | OpenAIRE |
Externí odkaz: |