Some Results of $f$-Harmonic and Bi-$f$-Harmonic Maps with Potential

Autor: Zegga Kaddour
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Volume: 14, Issue: 1 157-166
International Electronic Journal of Geometry
ISSN: 1307-5624
Popis: In this note we characterize the f-harmonic maps and bi-f-harmonic maps with potential.We provethat every bi-f-harmonic map with potential from complete Riemannian manifold, satisfying someconditions is a f-harmonic map with potential.
In this note, we characterize the $f$-harmonic maps and bi-$f$-harmonic maps with potential. We prove that every bi-$f$-harmonic map with potential from complete Riemannian manifold, satisfying some conditions is a $f$-harmonic map with potential. More, we study the case of conformal maps between equidimensional manifolds.
Databáze: OpenAIRE