Some spectral and quasi-spectral characterizations of distance-regular graphs
Autor: | E.R. van Dam, Miguel Angel Fiol, Aida Abiad |
---|---|
Přispěvatelé: | Econometrics and Operations Research, Research Group: Operations Research, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions, QE Operations research, RS: GSBE ETBC |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Odd-girth
Combinatorial analysis Symmetric graph 0211 other engineering and technologies Combinatòria 0102 computer and information sciences 02 engineering and technology Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC] 01 natural sciences Distance-regular graph Theoretical Computer Science law.invention Combinatorics girth POLYNOMIALS distance-regular graph law Line graph odd-girth FOS: Mathematics Mathematics - Combinatorics Discrete Mathematics and Combinatorics Adjacency matrix Mathematics Discrete mathematics Strongly regular graph Grafs Teoria de 021107 urban & regional planning Eigenvalues Preintersection numbers Graph theory Graph energy Computational Theory and Mathematics Girth 010201 computation theory & mathematics Triangle-free graph preintersection numbers Regular graph Combinatorics (math.CO) 05E30 05C50 05 Combinatorics::05E Algebraic combinatorics [Classificació AMS] 05 Combinatorics::05C Graph theory [Classificació AMS] EXCESS THEOREM Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs [Àrees temàtiques de la UPC] |
Zdroj: | Journal of Combinatorial Theory, Series A, Structures designs and application combinatorics, 143, 1-18. Academic Press Inc. Recercat. Dipósit de la Recerca de Catalunya instname Journal of Combinatorial Theory Series A, 143, 1-18. Academic Press Inc. UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
ISSN: | 0097-3165 |
Popis: | © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ In this paper we consider the concept of preintersection numbers of a graph. These numbers are determined by the spectrum of the adjacency matrix of the graph, and generalize the intersection numbers of a distance-regular graph. By using the preintersection numbers we give some new spectral and quasi-spectral characterizations of distance-regularity, in particular for graphs with large girth or large odd-girth. (C) 2016 Published by Elsevier Inc. |
Databáze: | OpenAIRE |
Externí odkaz: |