Some spectral and quasi-spectral characterizations of distance-regular graphs

Autor: E.R. van Dam, Miguel Angel Fiol, Aida Abiad
Přispěvatelé: Econometrics and Operations Research, Research Group: Operations Research, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions, QE Operations research, RS: GSBE ETBC
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Odd-girth
Combinatorial analysis
Symmetric graph
0211 other engineering and technologies
Combinatòria
0102 computer and information sciences
02 engineering and technology
Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC]
01 natural sciences
Distance-regular graph
Theoretical Computer Science
law.invention
Combinatorics
girth
POLYNOMIALS
distance-regular graph
law
Line graph
odd-girth
FOS: Mathematics
Mathematics - Combinatorics
Discrete Mathematics and Combinatorics
Adjacency matrix
Mathematics
Discrete mathematics
Strongly regular graph
Grafs
Teoria de

021107 urban & regional planning
Eigenvalues
Preintersection numbers
Graph theory
Graph energy
Computational Theory and Mathematics
Girth
010201 computation theory & mathematics
Triangle-free graph
preintersection numbers
Regular graph
Combinatorics (math.CO)
05E30
05C50

05 Combinatorics::05E Algebraic combinatorics [Classificació AMS]
05 Combinatorics::05C Graph theory [Classificació AMS]
EXCESS THEOREM
Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs [Àrees temàtiques de la UPC]
Zdroj: Journal of Combinatorial Theory, Series A, Structures designs and application combinatorics, 143, 1-18. Academic Press Inc.
Recercat. Dipósit de la Recerca de Catalunya
instname
Journal of Combinatorial Theory Series A, 143, 1-18. Academic Press Inc.
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 0097-3165
Popis: © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ In this paper we consider the concept of preintersection numbers of a graph. These numbers are determined by the spectrum of the adjacency matrix of the graph, and generalize the intersection numbers of a distance-regular graph. By using the preintersection numbers we give some new spectral and quasi-spectral characterizations of distance-regularity, in particular for graphs with large girth or large odd-girth. (C) 2016 Published by Elsevier Inc.
Databáze: OpenAIRE