Computing minimal Gorenstein covers

Autor: Roser Homs, Juan Elias, Bernard Mourrain
Přispěvatelé: Departament de Matematiques i Informatica, Universitat de Barcelona, AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA), European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme), H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019), European Project: 813211,H2020,POEMA(2019)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Pure and Applied Algebra
Journal of Pure and Applied Algebra, 2019, ⟨10.1016/j.jpaa.2019.106280⟩
Journal of Pure and Applied Algebra, Elsevier, 2019, ⟨10.1016/j.jpaa.2019.106280⟩
ISSN: 0022-4049
1873-1376
DOI: 10.1016/j.jpaa.2019.106280⟩
Popis: We analyze and present an effective solution to the minimal Gorenstein cover problem: given a local Artin k-algebra A = k 〚 x 1 , … , x n 〛 / I , compute an Artin Gorenstein k-algebra G = k 〚 x 1 , … , x n 〛 / J such that l ( G ) − l ( A ) is minimal. We approach the problem by using Macaulay's inverse systems and a modification of the integration method for inverse systems to compute Gorenstein covers. We propose new characterizations of the minimal Gorenstein cover and present a new algorithm for the effective computation of the variety of all minimal Gorenstein covers of A for low Gorenstein colength. Experimentation illustrates the practical behavior of the method.
Databáze: OpenAIRE