A Damage Detection Method Using Neural Network Optimized by Multiple Particle Collision Algorithm
Autor: | Sergio V. Farias, Elcio Hideiti Shiguemori, Haroldo F. de Campos Velho, Osamu Saotome |
---|---|
Rok vydání: | 2021 |
Předmět: |
Article Subject
Artificial neural network Computer science Convolutional neural network Wavelet Lamb waves Control and Systems Engineering Spatial reference system T1-995 Structural health monitoring Electrical and Electronic Engineering Entropy (energy dispersal) Instrumentation Algorithm Technology (General) Continuous wavelet transform |
Zdroj: | Journal of Sensors, Vol 2021 (2021) |
ISSN: | 1687-7268 1687-725X |
Popis: | A critical task of structural health monitoring is damage detection and localization. Lamb wave propagation methods have been successfully applied for damage identification in plate-like structures. However, Lamb wave processing is still a challenging task due to its multimodal and dispersive characteristics. To address this issue, data-driven machine learning approaches as artificial neural network (ANN) have been proposed. However, the effectiveness of ANN can be improved based on its architecture and the learning strategy employed to train it. The present paper proposes a Multiple Particle Collision Algorithm (MPCA) to design an optimum ANN architecture to detect and locate damages in plate-like structures. For the first time in the literature, the MPCA is applied to find damages in plate-like structures. The present work uses one piezoelectric transducer to generate Lamb wave signals on an aluminum plate structure and a linear array of four transducers to capture the scattered signals. The continuous wavelet transform (CWT) processes the captured signals to estimate the time-of-flight (ToF) that is the ANN inputs. The ANN output is the damage spatial coordinates. In addition to MPCA optimization, this paper uses a quantitative entropy-based criterion to find the best mother wavelet and the scale values. The presented experimental results show that MPCA is capable of finding a simple ANN architecture with good generalization performance in the proposed damage localization application. The proposed method is compared with the 1-dimensional convolutional neural network (1D-CNN). A discussion about the advantages and limitations of the proposed method is presented. |
Databáze: | OpenAIRE |
Externí odkaz: |