Solving Some Affine Equations over Finite Fields

Autor: Dok Nam Lee, Kwang Ho Kim, Sihem Mesnager, Jong Hyok Choe
Přispěvatelé: Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Finite Fields and Their Applications
Finite Fields and Their Applications, Elsevier, 2020, 68, pp.101746-. ⟨10.1016/j.ffa.2020.101746⟩
ISSN: 1071-5797
1090-2465
DOI: 10.1016/j.ffa.2020.101746⟩
Popis: Let l and k be two integers such that l | k . Define T l k ( X ) : = X + X p l + ⋯ + X p k − 2 l + X p k − l and S l k ( X ) : = X − X p l + ⋯ + ( − 1 ) ( k / l − 1 ) X p k − l , where p is any prime. This paper gives explicit representations of all solutions in F p n to the affine equations T l k ( X ) = a and S l k ( X ) = a , a ∈ F p n . The case p = 2 was solved very recently in [10] . The results of this paper reveal another solution.
Databáze: OpenAIRE