Oscillatory behavior of large eigenvalues in quantum Rabi models

Autor: Lech Zielinski, Anne Boutet de Monvel
Přispěvatelé: Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville (LMPA), Université du Littoral Côte d'Opale (ULCO)
Rok vydání: 2017
Předmět:
Zdroj: International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2021, 2021 (7), pp.5155-5213. ⟨10.1093/imrn/rny294⟩
ISSN: 1073-7928
1687-0247
DOI: 10.48550/arxiv.1711.03366
Popis: We investigate the large $n$ asymptotics of the $n$-th eigenvalue for a class of unbounded self-adjoint operators defined by infinite Jacobi matrices with discrete spectrum. In the case of the quantum Rabi model we obtain the first three terms of the asymptotics which determine the parameters of the model. This paper is based on our previous paper [5] that it completes and improves.
Comment: 32 pages, no figure
Databáze: OpenAIRE