Oscillatory behavior of large eigenvalues in quantum Rabi models
Autor: | Lech Zielinski, Anne Boutet de Monvel |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville (LMPA), Université du Littoral Côte d'Opale (ULCO) |
Rok vydání: | 2017 |
Předmět: |
[PHYS]Physics [physics]
Pure mathematics Class (set theory) General Mathematics 010102 general mathematics FOS: Physical sciences Mathematical Physics (math-ph) 01 natural sciences Discrete spectrum 47B36 (Primary) 81T10 81Q10 47A75 47A55 (Secondary) 0103 physical sciences 0101 mathematics 010306 general physics Quantum Eigenvalues and eigenvectors Mathematical Physics Mathematics |
Zdroj: | International Mathematics Research Notices International Mathematics Research Notices, Oxford University Press (OUP), 2021, 2021 (7), pp.5155-5213. ⟨10.1093/imrn/rny294⟩ |
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.48550/arxiv.1711.03366 |
Popis: | We investigate the large $n$ asymptotics of the $n$-th eigenvalue for a class of unbounded self-adjoint operators defined by infinite Jacobi matrices with discrete spectrum. In the case of the quantum Rabi model we obtain the first three terms of the asymptotics which determine the parameters of the model. This paper is based on our previous paper [5] that it completes and improves. Comment: 32 pages, no figure |
Databáze: | OpenAIRE |
Externí odkaz: |