Steady and dynamical analysis of a combined cooling and power cycle
Autor: | Hai Trieu Phan, N. Tauveron, Q. Blondel, B. Gonzalez, N. Voeltzel |
---|---|
Přispěvatelé: | Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) |
Rok vydání: | 2020 |
Předmět: |
Fluid Flow and Transfer Processes
Work (thermodynamics) business.industry media_common.quotation_subject 0211 other engineering and technologies 02 engineering and technology Inertia 7. Clean energy Power (physics) [SPI]Engineering Sciences [physics] Rectifier Cogeneration Electricity generation 020401 chemical engineering Environmental science Production (economics) 021108 energy Transient (oscillation) 0204 chemical engineering Process engineering business media_common |
Zdroj: | Thermal Science and Engineering Progress Thermal Science and Engineering Progress, 2020, 19, pp.100650-. ⟨10.1016/j.tsep.2020.100650⟩ Thermal Science and Engineering Progress, Elsevier, 2020, 19, pp.100650-. ⟨10.1016/j.tsep.2020.100650⟩ |
ISSN: | 2451-9049 |
Popis: | Absorption cycles cogenerating cooling and power are anticipated to show favorable performances compared to separate generation systems. Through several models and a few prototypes, different studies validated the ability of cogeneration cycles to work with low-grade heat (lower than 200 °C). The present work aims to characterize and optimize a water-ammonia based cogeneration system of small capacity (cooling production: 5 kW, electricity production: 1 kW). Firstly, an accurate model of a scroll expander is implemented in a complete cogeneration cycle to simulate the power production. The effects on the expander of both the water/ammonia fraction and temperature of the expanded fluid are analyzed, providing a better understanding of the impacts of the rectifier and of the super-heater on the global cycle performances. Secondly, to foresee the cycle performance, a dual-objective optimization algorithm maximizes both cooling and power production according to variable temperature sources. Finally, the dynamic behavior of the cycle is investigated through transient simulations. Such complex systems present significant inertia when starting or switching from one production mode to another (between cooling and power). This study provides some insight on the most critical elements of the cycle. |
Databáze: | OpenAIRE |
Externí odkaz: |