MONTE-CARLO ANALYSIS OF PERCOLATION OF LINE SEGMENTS ON A SQUARE LATTICE
Autor: | Y. Leroyer, E Pommiers |
---|---|
Přispěvatelé: | Centre de physique moléculaire optique et hertzienne (CPMOH), Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 1994 |
Předmět: |
Physics
[PHYS]Physics [physics] Percolation critical exponents Condensed matter physics Condensed Matter (cond-mat) Monte Carlo method FOS: Physical sciences Percolation threshold Condensed Matter 01 natural sciences Fractal dimension Square lattice Directed percolation Condensed Matter::Disordered Systems and Neural Networks 010305 fluids & plasmas Mathematics::Probability Percolation 0103 physical sciences Condensed Matter::Statistical Mechanics Statistical physics Continuum percolation theory 010306 general physics ComputingMilieux_MISCELLANEOUS |
Zdroj: | Physical Review B: Condensed Matter and Materials Physics (1998-2015) Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 1994, 50 (5), pp.2795-2799. ⟨10.1103/PhysRevB.50.2795⟩ |
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.50.2795⟩ |
Popis: | We study the percolative properties of bi-dimensional systems generated by a random sequential adsorption of line-segments on a square lattice. As the segment length grows, the percolation threshold decreases, goes through a minimum and then increases slowly for large segments. We explain this non-monotonic behaviour by a structural change of the percolation clusters. Moreover, it is strongly suggested that these systems do not belong to the universality class of random site percolation. 7 pages + 5 figures PostScript (appended), LATeX, PTB_93_21 |
Databáze: | OpenAIRE |
Externí odkaz: |