G2 checkpoint control and G2 chromosomal radiosensitivity in cancer survivors and their families

Autor: Jeanette Falck Winther, Kevin K. Cadwell, Gillian B. Curwen, E. Janet Tawn, John D. Boice
Rok vydání: 2010
Předmět:
Zdroj: Mutagenesis. 26:291-294
ISSN: 1464-3804
0267-8357
DOI: 10.1093/mutage/geq087
Popis: Significant inter-individual variation in G(2) chromosomal radiosensitivity, measured as radiation-induced chromatid-type aberrations in the subsequent metaphase, has been reported in peripheral blood lymphocytes of both healthy individuals and a range of cancer patients. One possible explanation for this variation is that it is driven, at least in part, by the efficiency of G(2)-M checkpoint control. The hypothesis tested in the current analysis is that increased G(2) chromosomal radiosensitivity is facilitated by a less efficient G(2)-M checkpoint. The study groups comprised 23 childhood and adolescent cancer survivors, their 23 partners and 38 of their offspring (Group 1) and 29 childhood and young adult cancer survivors (Group 2). Following exposure to 0.5 Gy of 300 kV X-rays, lymphocyte cultures were assessed for both G(2) checkpoint delay and G(2) chromosomal radiosensitivity. In Group 1, the extent of G(2) checkpoint delay was measured by mitotic inhibition. No statistically significant differences in G(2) checkpoint delay were observed between the cancer survivors (P = 0.660) or offspring (P = 0.171) and the partner control group nor was there any significant relationship between G(2) checkpoint delay and G(2) chromosomal radiosensitivity in the cancer survivors (P = 0.751), the partners (P = 0.634), the offspring (P = 0.824) or Group 1 taken as a whole (P = 0.379). For Group 2, G(2) checkpoint delay was assessed with an assay utilising premature chromosome condensation to distinguish cell cycle stage. No significant relationship between G(2) checkpoint delay and G(2) chromosomal radiosensitivity was found (P = 0.284). Thus, this study does not support a relationship between G(2)-M checkpoint efficiency and variation in G(2) chromosomal radiosensitivity.
Databáze: OpenAIRE