Popis: |
Context-free languages are highly important in computer language processing technology as well as in formal language theory. The Pumping Lemma for Context-Free Languages states a property that is valid for all context-free languages, which makes it a tool for showing the existence of non-context-free languages. This paper presents a formalization, extending the previously formalized Lemma, of the fact that several well-known languages are not context-free. Moreover, we build on those results to construct a formal proof of the well-known property that context-free languages are not closed under intersection. All the formalization has been mechanized in the Coq proof assistant. (undefined) |