Modelos de redes neuronales artificiales para predecir las relaciones entre el diámetro a la altura del pecho y el diámetro del tocón: pinos de Crimea en el bosque ÇAKÜ

Autor: Sinan Bulut, İlker Ercanli, Alkan Günlü, Ferhat Bolat, Muammer Şenyurt
Rok vydání: 2020
Předmět:
Zdroj: BOSQUE; Vol. 41 Núm. 1 (2020); 25-34
Bosque (Valdivia) v.41 n.1 2020
SciELO Chile
CONICYT Chile
instacron:CONICYT
ISSN: 0717-9200
0304-8799
DOI: 10.4067/s0717-92002020000100025
Popis: This study introduces the artificial neural networks (ANN) function to model relationship between diameter at breast height (dbh) and stump diameter and investigates the potential of ANN model to obtain the prediction of dbh. In total, 583 diameters at breast height-stump diameter pairs were measured in 61 plots sampled from Crimean pine [Pinus nigrasubsp.pallasiana] stands in ÇAKÜ Research Forest, Çankırı, Turkey. The network models, including the activation functions of function between input layer and hidden layer and pure-lin function between hidden layer and output layer (A6 alternative) with 12 # neurons, were found to the better predictive with lower error values including SSE (2585.3869), AIC (821.5731), BIC (825.7817), RMSE (2.2831), MSE (5.2125) and higher fitting value, such as R2adj(0.9372), than those of other prediction methods. The best predictive ANN model resulted in the reductions of SSE, AIC, BIC, RMSE and MSE by 9.8486 %, 5.9018 %, 5.8735 %, 5.0519 % and 9.8486 %, and R2adjin the increase of 0.7377 % as compared to those by the regression model. This present study has underlined the capability of the ANN model for predicting the relationship between dbh and stump diameter. This novel artificial intelligence technique provides a modeling alternative for forest managers to predict dbh required information for the management of forests.
Este estudio presenta la función de redes neuronales artificiales (ANN) para modelar la relación entre el diámetro a la altura del pecho (dap) y el diámetro del tocón e investigar el potencial del modelo ANN para obtener la predicción de dap. Se midieron 583 diámetros totales en pares de altura del pecho-diámetro de tocón en 61 parcelas muestreadas de pino de Crimea [Pinus nigrasubsp.pallasiana] del bosque experimental de ÇAKÜ, Çankırı, Turquía. Se encontró que el modelo de red que incluye las funciones de activación de la función entre la capa de entrada y la capa oculta y la función de -lin entre la capa oculta y la capa de salida (alternativa A6) con 12 neuronas # fue mejor predictivo, con valores de error más bajos, incluyendo SSE (2585.3869), AIC (821.5731), BIC (825.7817), RMSE (2.2831), MSE (5.2125) y valores de ajuste más altos, como R2adj(0.9372), que los de otros métodos de predicción. El mejor modelo predictivo de ANN resultó en la reducción de SSE, AIC, BIC, RMSE y MSE en 9.8486 %, 5.9018 %, 5.8735 %, 5.0519 % y 9.8486 %, y R2adjcon aumento de 0.7377 %, en comparación con los modelo de regresión. Este estudio subraya la capacidad del modelo ANN para predecir la relación entre dap y el diámetro del tocón. Esta novedosa técnica de inteligencia artificial proporciona una alternativa de modelado para que los administradores forestales predigan la información requerida sobre dap para el manejo de los bosques.
Databáze: OpenAIRE