Lie rackoids integrating Courant algebroids

Autor: Camille Laurent-Gengoux, Friedrich Wagemann
Přispěvatelé: Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Université de Nantes (UN)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Pure mathematics
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Standard Courant algebroid
01 natural sciences
Courant algebroid
Dorfman bracket
Leibniz algebroid
Poisson manifold
0103 physical sciences
FOS: Mathematics
Equivalence relation
Algebraic Topology (math.AT)
Mathematics - Algebraic Topology
0101 mathematics
Mathematics::Symplectic Geometry
Quotient
Integration of Courant algebroids
Mathematics
Lie rackoid
Weinstein groupoid
010102 general mathematics
Automorphism
[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]
Lie groupoid
Bracket (mathematics)
Extended tangent bundle
Mathematics - Symplectic Geometry
Product (mathematics)
[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT]
Symplectic Lie groupoid
Symplectic Geometry (math.SG)
010307 mathematical physics
Geometry and Topology
Analysis
Zdroj: Annals of Global Analysis and Geometry
Annals of Global Analysis and Geometry, Springer Verlag, 2020, 57 (2), pp.225-256. ⟨10.1007/s10455-019-09697-2⟩
ISSN: 0232-704X
1572-9060
DOI: 10.1007/s10455-019-09697-2⟩
Popis: We construct an infinite-dimensional Lie rackoid Y which hosts an integration of the standard Courant algebroid. As a set, $$Y={{\mathcal {C}}}^{\infty }([0,1],T^*M)$$ for a compact manifold M. The rackoid product is by automorphisms of the Dorfman bracket. The first part of the article is a study of the Lie rackoid Y and its tangent Leibniz algebroid, a quotient of which is the standard Courant algebroid. In the second part, we study the equivalence relation related to the quotient on the rackoid level and restrict then to an integrable Dirac structure. We show how our integrating object contains the corresponding integrating Weinstein Lie groupoid in the case where the Dirac structure is given by a Poisson structure.
Databáze: OpenAIRE