Metric-minimizing surfaces revisited
Autor: | Anton Petrunin, Stephan Stadler |
---|---|
Rok vydání: | 2019 |
Předmět: |
Mathematics - Differential Geometry
Surface (mathematics) Geometry 53C43 Deformation (meteorology) 53C23 53C45 01 natural sciences 53C45 53C43 53C23 30L05 Intrinsic metric Mathematics - Metric Geometry Mathematics::Category Theory 0103 physical sciences FOS: Mathematics Mathematics::Metric Geometry 0101 mathematics Mathematics 010102 general mathematics intrinsic metric Metric Geometry (math.MG) Differential Geometry (math.DG) Metric (mathematics) metric-minimizing surfaces 30L05 010307 mathematical physics Geometry and Topology |
Zdroj: | Geom. Topol. 23, no. 6 (2019), 3111-3139 |
ISSN: | 1364-0380 1465-3060 |
DOI: | 10.2140/gt.2019.23.3111 |
Popis: | A surface which does not admit a length nonincreasing deformation is called metric minimizing. We show that metric minimizing surfaces in CAT(0) spaces are locally CAT(0) with respect to their intrinsic metric. |
Databáze: | OpenAIRE |
Externí odkaz: |