Bio-derived hard carbon nanosheets with high rate sodium-ion storage characteristics

Autor: Habtom D. Asfaw, Ritambhara Gond, Antonia Kotronia, Cheuk-Wai Tai, Reza Younesi
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: Biomass is a sustainable precursor of hard carbons destined for use in sodium-ion batteries. This study explores the synthesis of hard carbon nanosheets (HCNS) from oxidized cork and impact of synthesis temperature on the hard carbon characteristics. An increase in the carbonization temperature from 1000 to 1500 °C generally leads to lower BET specific surface areas (~55 to 20 m2 g−1) and d002 interlayer spacing (~ 4.0 to 3.7 Å). The effect of synthesis temperature is reflected in the initial coulombic efficiency (iCE) which increases from 72% at 1000 °C to 88% at 1500 °C, as a result of the decrease in surface area, and structural defects in the hard carbon as verified using Raman scattering. The impact of cycling temperature (~25, 30 and 55 °C) on the rate capability and long-term cycling is investigated using high precision coulometry cycler. For a galvanostatic test at 20 mA g−1 and ~ 25 °C, a reversible capacity of 276 mAh g−1 is observed with an iCE of ~88%. Increasing cycling temperature enhances the rate performance, but slightly lowers the iCE (~86% at 30 °C and ~ 81% at 55 °C). At 20 mA g−1, the reversible capacities obtained at 30 °C and 55 °C are on average ~ 260 and ~ 270 mAh g−1, respectively. For constant-current constant-voltage (CCCV) tests conducted at 30 °C, reversible capacities ranging from 252 to 268, 247–252, and 237–242 mAh g−1 can be obtained at 10, 100, and 1000 mA g−1, respectively. The respective capacities obtained at 55 °C are about 272–290, 260–279, and 234–265 mAh g−1 at 10, 100 and 1000 mA g−1. The applicability of the HCNS electrodes is eventually evaluated in full-cells with Prussian white cathodes, for which a discharge capacity of 152 mAh g−1 is obtained with an iCE of ~90%.
Databáze: OpenAIRE