Global H3K9 dimethylation status is not affected by transcription, translation, or DNA replication in porcine zygotes
Autor: | Ki-Eun Park, Luca Magnani, Xin Wang, M. N. Biancardi, Ryan A. Cabot, Christine M. Johnson |
---|---|
Rok vydání: | 2010 |
Předmět: |
DNA Replication
Transcription Genetic Swine Zygote Histones chemistry.chemical_compound Histone H3 Mice Transcription (biology) Genetics Animals RNA Messenger Cell Nucleus biology Gene Expression Profiling Lysine DNA replication Gene Expression Regulation Developmental Cell Biology Methylation Histone-Lysine N-Methyltransferase DNA Methylation Molecular biology Chromatin Histone chemistry Histone methyltransferase Protein Biosynthesis biology.protein Histone Methyltransferases DNA Developmental Biology |
Zdroj: | Molecular reproduction and development. 77(5) |
ISSN: | 1098-2795 |
Popis: | Methylation of the lysine 9 residue of histone H3 (H3K9) is linked to transcriptional repression. The observed structure of chromatin in porcine and murine embryos is different with regard to H3K9 dimethylation status, leading to our hypothesis that the intracellular mechanisms responsible for H3K9 methylation would also differ between these two species. The objectives of this study were: (1) to determine the extent that DNA, mRNA, and protein synthesis serve in maintaining the asymmetrical distribution of dimethylated H3K9 in porcine zygotes, (2) determine the extent to which the intracellular localization of individual pronuclei correlated with H3K9 dimethylation status, and (3) to determine the abundance of transcripts encoding the histone methyltransferases, with H3K9 methylation activity, in porcine oocytes and embryos. Our findings are that (1) H3K9 dimethylation status is not affected by DNA replication, transcription, or protein synthesis, (2) the location of a pronucleus does not significantly affect the H3K9 dimethylation status of the chromatin within that pronucleus, and (3) the histone methyltransferases with activity for H3K9 differ in transcript abundance in porcine oocytes and cleavage stage embyros. These results support our hypothesis that there is a difference in intracellular mechanisms affecting dimethylation status of H3K9 between porcine and murine embryos. |
Databáze: | OpenAIRE |
Externí odkaz: |