Algebraicity of the zeta function associated to a matrix over a free group algebra

Autor: Christian Kassel, Christophe Reutenauer
Přispěvatelé: Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de combinatoire et d'informatique mathématique [Montréal] (LaCIM), Centre de Recherches Mathématiques [Montréal] (CRM), Université de Montréal (UdeM)-Université de Montréal (UdeM)-Université du Québec à Montréal = University of Québec in Montréal (UQAM)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
14G10
Mathematics::Number Theory
68R15
[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]
01 natural sciences
Noncommutative formal power series
Combinatorics
Matrix (mathematics)
symbols.namesake
Integer
05A15
68Q45
68R15(Primary) 05E15
20M35
68Q70
14H05
14G40 (Secondary)

Mathematics::K-Theory and Homology
Mathematics::Quantum Algebra
0103 physical sciences
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
14H05
Mathematics - Combinatorics
05A15
14G10
68Q70

0101 mathematics
Algebra over a field
010306 general physics
Mathematics
Ring (mathematics)
Algebra and Number Theory
language
010102 general mathematics
16. Peace & justice
Noncommutative geometry
Riemann zeta function
zeta function
05E15
algebraic function
Mathematics - Classical Analysis and ODEs
Free group
symbols
Algebraic function
Combinatorics (math.CO)
05A15
68Q70
Zdroj: Algebra & Number Theory
Algebra & Number Theory, Mathematical Sciences Publishers 2014, pp.8-2 (2014), 497--511. ⟨10.2140/ant.2014.8.497⟩
Algebra Number Theory 8, no. 2 (2014), 497-511
ISSN: 1937-0652
Popis: Following and generalizing a construction by Kontsevich, we associate a zeta function to any matrix with entries in a ring of noncommutative Laurent polynomials with integer coefficients. We show that such a zeta function is an algebraic function.
13 pages; Versions 2 and 3: minor corrections. Versions 4 and 5: References [12], [19] added
Databáze: OpenAIRE