A Hybrid High-Order Discretization Method for Nonlinear Poroelasticity

Autor: Pierre Sochala, Michele Botti, Daniele Antonio Di Pietro
Rok vydání: 2019
Předmět:
Zdroj: Computational Methods in Applied Mathematics. 20:227-249
ISSN: 1609-9389
1609-4840
DOI: 10.1515/cmam-2018-0142
Popis: In this work, we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible fluid. The nonlinear elasticity operator is discretized using a Hybrid High-Order method, while the Darcy operator relies on a Symmetric Weighted Interior Penalty discontinuous Galerkin scheme. The method is valid in two and three space dimensions, delivers an inf-sup stable discretization on general meshes including polyhedral elements and nonmatching interfaces, supports arbitrary approximation orders, and has a reduced cost thanks to the possibility of statically condensing a large subset of the unknowns for linearized versions of the problem. Moreover, the proposed construction can handle both nonzero and vanishing specific storage coefficients.
Databáze: OpenAIRE