Collisionally activated dissociation and tandem mass spectrometry of intact hemoglobin β-chain variant proteins with electrospray ionization
Autor: | Chuen-Shang C. Wu, Richard D. Smith, Charles G. Edmonds, Joseph A. Loo, Karen J. Light-Wahl, H. Ewa Witkowska, Cedric H.L. Shackleton |
---|---|
Rok vydání: | 1993 |
Předmět: |
Adult
Collision-induced dissociation Chemistry Circular Dichroism Hemoglobins Abnormal Electrospray ionization Molecular Sequence Data Analytical chemistry Mass spectrometry Tandem mass spectrometry Biochemistry Gas Chromatography-Mass Spectrometry Mass Spectrometry Protein Structure Secondary Dissociation (chemistry) Protein Structure Tertiary Crystallography Fragmentation (mass spectrometry) Mass spectrum Humans Molecular Medicine Amino Acid Sequence Amino Acids Protein secondary structure Spectroscopy |
Zdroj: | Biological Mass Spectrometry. 22:112-120 |
ISSN: | 1096-9888 1052-9306 |
DOI: | 10.1002/bms.1200220203 |
Popis: | Electrospray ionization collisionally activated dissociation (CAD) mass spectra of multiply charged human hemoglobin beta-chain variant proteins (146 amino acid residues, 15.9 kDa), generated in the atmospheric pressure/vacuum interface and in the collision quadrupole of a triple-quadrupole mass spectrometer, are shown and compared. Several series of structurally informative singly and multiply charged b- and y-mode product ions are observed, with cleavage of the Thr 50-Pro 51 CO-NH bond to produce the complementary y96 and b50 sequence ions as the most favored fragmentation pathway. The eight different beta-globin variants studied differ by a single amino acid substitution and can be differentiated from the observed m/z shifts of the assigned product ions. The overall fragmentation patterns for the variant polypeptides are very similar, with the exception of the Willamette form, in which Arg is substituted for Pro- 51, and multiply charged y96 product ions are not observed. Circular dichroism spectra of normal beta A and beta Willamette show very little difference under a variety of solvent conditions, indicating that fragmentation differences in their respective CAD mass spectra are substantially governed by primary rather than secondary structure. |
Databáze: | OpenAIRE |
Externí odkaz: |