Chimera States and Seizures in a Mouse Neuronal Model
Autor: | J. Matthew Mahoney, Henry M. Mitchell, Christopher M. Danforth, Peter Sheridan Dodds |
---|---|
Rok vydání: | 2020 |
Předmět: |
Applied Mathematics
FOS: Physical sciences Pattern Formation and Solitons (nlin.PS) Biology medicine.disease Nonlinear Sciences - Pattern Formation and Solitons 01 natural sciences 010305 fluids & plasmas 03 medical and health sciences Chimera (genetics) Epilepsy 0302 clinical medicine medicine.anatomical_structure Quantitative Biology - Neurons and Cognition FOS: Biological sciences Modeling and Simulation 0103 physical sciences medicine Neurons and Cognition (q-bio.NC) Neuron Engineering (miscellaneous) Neuroscience 030217 neurology & neurosurgery |
Zdroj: | International Journal of Bifurcation and Chaos. 30:2050256 |
ISSN: | 1793-6551 0218-1274 |
DOI: | 10.1142/s0218127420502569 |
Popis: | Chimera states---the coexistence of synchrony and asynchrony in a nonlocally-coupled network of identical oscillators---are often used as a model framework for epileptic seizures. Here, we explore the dynamics of chimera states in a network of modified Hindmarsh-Rose neurons, configured to reflect the graph of the mesoscale mouse connectome. Our model produces superficially epileptiform activity converging on persistent chimera states in a large region of a two-parameter space governing connections (a) between subcortices within a cortex and (b) between cortices. Our findings contribute to a growing body of literature suggesting mathematical models can qualitatively reproduce epileptic seizure dynamics. Comment: 16 pages, 17 figures |
Databáze: | OpenAIRE |
Externí odkaz: |