Computational Precision of Mental Inference as Critical Source of Human Choice Suboptimality

Autor: Anne-Dominique Devauchelle, Jan Drugowitsch, Valentin Wyart, Etienne Koechlin
Rok vydání: 2016
Předmět:
Zdroj: Neuron. 92:1398-1411
ISSN: 0896-6273
DOI: 10.1016/j.neuron.2016.11.005
Popis: Making decisions in uncertain environments often requires combining multiple pieces of ambiguous information from external cues. In such conditions, human choices resemble optimal Bayesian inference, but typically show a large suboptimal variability whose origin remains poorly understood. In particular, this choice suboptimality might arise from imperfections in mental inference rather than in peripheral stages, such as sensory processing and response selection. Here, we dissociate these three sources of suboptimality in human choices based on combining multiple ambiguous cues. Using a novel quantitative approach for identifying the origin and structure of choice variability, we show that imperfections in inference alone cause a dominant fraction of suboptimal choices. Furthermore, two-thirds of this suboptimality appear to derive from the limited precision of neural computations implementing inference rather than from systematic deviations from Bayes-optimal inference. These findings set an upper bound on the accuracy and ultimate predictability of human choices in uncertain environments.
Databáze: OpenAIRE