A PHASE TRANSITION FOR LARGE VALUES OF BIFURCATING AUTOREGRESSIVE MODELS
Autor: | Vincent Bansaye, S. Valère Bitseki Penda |
---|---|
Přispěvatelé: | Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Chair 'Modelisation Mathematique et Biodiversite' of VEOLIA Environnement-Ecole Polytechnique-MNHN-F.X French National Research Agency (ANR)ANR-16-CE40-0001, ANR-16-CE40-0001,ABIM,Approximations et comportement de modèles aléatoires individu-centrés(2016), Bitseki Penda, Siméon Valère |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Statistics and Probability
[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] Phase transition random environment General Mathematics media_common.quotation_subject moderate deviations limit-theorems markov-chains Statistics::Other Statistics Branching process deviation inequalities 92D25 01 natural sciences Asymmetry 010104 statistics & probability [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] Convergence (routing) [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] Applied mathematics 60C05 [MATH]Mathematics [math] 0101 mathematics autoregressive process 60J20 law Mathematics media_common Event (probability theory) parameters convergence Markov chain 010102 general mathematics [MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] Large deviations large deviations Mathematics Subject Classification (2010): 60J80 60K37 Autoregressive model cells Large deviations theory Statistics Probability and Uncertainty asymmetry 60F10 |
Zdroj: | Journal of Theoretical Probability Journal of Theoretical Probability, Springer, 2021, ⟨10.1007/s10959-020-01033-w⟩ |
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-020-01033-w⟩ |
Popis: | We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process. |
Databáze: | OpenAIRE |
Externí odkaz: |