The gp38 Adhesins of the T4 Superfamily: A Complex Modular Determinant of the Phage’s Host Specificity

Autor: Anne Caumont-Sarcos, Elsa Perrody, Sabrina N. Trojet, Henry M. Krisch, André M. Comeau
Přispěvatelé: Laboratoire de microbiologie et génétique moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2011
Předmět:
Zdroj: Genome Biology and Evolution
Genome Biology and Evolution, Society for Molecular Biology and Evolution, 2011, 3, pp.1-13
ISSN: 1759-6653
Popis: The tail fiber adhesins are the primary determinants of host range in the T4-type bacteriophages. Among the indispensable virion components, the sequences of the long tail fiber genes and their associated adhesins are among the most variable. The predominant form of the adhesin in the T4-type phages is not even the version of the gene encoded by T4, the archetype of the superfamily, but rather a small unrelated protein (gp38) encoded by closely related phages such as T2 and T6. This gp38 adhesin has a modular design: its N-terminal attachment domain binds at the tip of the tail fiber, whereas the C-terminal specificity domain determines its host receptor affinity. This specificity domain has a series of four hypervariable segments (HVSs) that are separated by a set of highly conserved glycine-rich motifs (GRMs) that apparently form the domain's conserved structural core. The role of gp38's various components was examined by a comparative analysis of a large series of gp38 adhesins from T-even superfamily phages with differing host specificities. A deletion analysis revealed that the individual HVSs and GRMs are essential to the T6 adhesin's function and suggests that these different components all act in synergy to mediate adsorption. The evolutionary advantages of the modular design of the adhesin involving both conserved structural elements and multiple independent and easily interchanged specificity determinants are discussed.
Databáze: OpenAIRE