Monomial preserving derivations and Mathieu–Zhao subspaces
Autor: | Arno van den Essen, Xiaosong Sun |
---|---|
Rok vydání: | 2018 |
Předmět: |
Polynomial
Pure mathematics Monomial Algebra and Number Theory Mathematics::Number Theory 010102 general mathematics Zero (complex analysis) Jacobian conjecture 01 natural sciences Linear subspace Image (mathematics) 0103 physical sciences 010307 mathematical physics 0101 mathematics Algebra over a field Mathematics Subspace topology |
Zdroj: | Journal of Pure and Applied Algebra, 222, 3219-3223 Journal of Pure and Applied Algebra, 222, 10, pp. 3219-3223 |
ISSN: | 0022-4049 |
Popis: | In this paper, we give a complete description of when the image of a monomial preserving derivation (or E -derivation) of the polynomial algebra over a field of characteristic zero is a Mathieu–Zhao subspace. In particular we show that the LFED and LNED conjectures hold for these derivations. The problem of whether the image of a derivation is a Mathieu–Zhao subspace arose from the study of the Jacobian conjecture. |
Databáze: | OpenAIRE |
Externí odkaz: |