Controllable pitch propeller optimization through meta-heuristic algorithm
Autor: | Alessandro Ceruti, Antonio Bacciaglia, Alfredo Liverani |
---|---|
Přispěvatelé: | Bacciaglia, Antonio, Ceruti, Alessandro, Liverani, Alfredo |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Fitness function
Computer science Particle swarm optimization 0211 other engineering and technologies General Engineering Process (computing) Thrust 02 engineering and technology Design propeller Computer Science Applications Variable pitch propeller Set (abstract data type) 020303 mechanical engineering & transports 0203 mechanical engineering Modeling and Simulation Controllable pitch propeller Torque CAD Engineering design process Algorithm Software 021106 design practice & management |
Popis: | This paper describes a methodology to design and optimize a controllable pitch propeller suitable for small leisure ship boats. A proper range for design parameters has to be set by the user. An optimization based on the Particle Swarm Optimization algorithm is carried out to minimize a fitness function representing the engine’s fuel consumption. The OpenProp code has been integrated in the procedure to compute thrust and torque. Blade’s geometry and tables about pitch, thrust and consumption are the main output of the optimization process. A case study has been included to show how the procedure can be implemented in the design process. A case study shows that the procedure allows a designer to sketch a controllable pitch propeller with optimal efficiency; computational times are compatible with the design conceptual phase where several scenarios must be investigated to set the most suitable for the following detailed design. A drawback of this approach is given by the need for a quite skilled user in charge of defining the allowable ranges for design parameters, and the need for data about the engine and boat to be designed. |
Databáze: | OpenAIRE |
Externí odkaz: |