Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilicSulfolobales
Autor: | Mashkurul Haque, Robert M. Kelly, Lisa M. Keller, Andrew J. Loder, Karl A. Widney, Benjamin M. Zeldes, James A. Counts, Sonja-Verena Albers |
---|---|
Rok vydání: | 2019 |
Předmět: |
inorganic chemicals
Sulfolobus acidocaldarius Chemoautotrophic Growth Oxygenase Thiosulfates Sulfolobus tokodaii chemistry.chemical_element Microbiology 03 medical and health sciences Oxidoreductase Autotroph Ecology Evolution Behavior and Systematics 030304 developmental biology chemistry.chemical_classification Autotrophic Processes 0303 health sciences biology 030306 microbiology digestive oral and skin physiology biology.organism_classification Sulfur chemistry Biochemistry Heterologous expression Oxidoreductases Sulfolobales Oxidation-Reduction |
Zdroj: | Environmental Microbiology. 21:3696-3710 |
ISSN: | 1462-2920 1462-2912 |
DOI: | 10.1111/1462-2920.14712 |
Popis: | Species in the archaeal order Sulfolobales thrive in hot acid and exhibit remarkable metabolic diversity. Some species are chemolithoautotrophic, obtaining energy through the oxidation of inorganic substrates, sulphur in particular, and acquiring carbon through the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) CO2 -fixation cycle. The current model for sulphur oxidation in the Sulfolobales is based on the biochemical analysis of specific proteins from Acidianus ambivalens, including sulphur oxygenase reductase (SOR) that disproportionates S° into H2 S and sulphite (SO32- ). Initial studies indicated SOR catalyses the essential first step in oxidation of elemental sulphur, but an ancillary role for SOR as a 'recycle' enzyme has also been proposed. Here, heterologous expression of both SOR and membrane-bound thiosulphate-quinone oxidoreductase (TQO) from Sulfolobus tokodaii 'restored' sulphur oxidation capacity in Sulfolobus acidocaldarius DSM639, but not autotrophy, although earlier reports indicate this strain was once capable of chemolithoautotrophy. Comparative transcriptomic analyses of Acidianus brierleyi, a chemolithoautotrophic sulphur oxidizer, and S. acidocaldarius DSM639 showed that while both share a strong transcriptional response to elemental sulphur, S. acidocaldarius DSM639 failed to upregulate key 3-HP/4-HB cycle genes used by A. brierleyi to drive chemolithoautotrophy. Thus, the inability for S. acidocaldarius DSM639 to grow chemolithoautotrophically may be rooted more in gene regulation than the biochemical capacity. |
Databáze: | OpenAIRE |
Externí odkaz: |