Shortest Path Problem under Interval Valued Neutrosophic Setting
Autor: | K.P. Krishnan Kishore, Mohamed Talea, Assia Bakali, Florentin Smarandache, Said Broumi, Rıdvan Şahin |
---|---|
Přispěvatelé: | Bayburt University |
Rok vydání: | 2015 |
Předmět: |
Discrete mathematics
Mathematics::General Mathematics Shortest Path Problem Node (networking) Score Function (mathematics) Interval valued Ranking (information retrieval) Shortest path problem Computer Science (miscellaneous) Score Function interval valued neutrosophic graph Electrical and Electronic Engineering Arc length Mathematics |
Zdroj: | BASE-Bielefeld Academic Search Engine |
ISSN: | 2278-3091 |
DOI: | 10.30534/ijatcse/2019/4081.12019 |
Popis: | This paper provides a research of the shortest neutrosophic path with interval valued neutrosophic numbers on a network. The suggested algorithm also provides the shortest path length utilizing ranking function from the source node to the destination node. Each of the arc lengths is attributed to an interval valued neutrosophic number. Lastly, we provide a numerical example to illustrate the suggested approach. © 2019, World Academy of Research in Science and Engineering. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |