Prediction of Second Melting Temperatures Already Observed in Pure Elements by Molecular Dynamics Simulations

Autor: Michael I. Ojovan, Robert Tournier
Přispěvatelé: Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G ), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Imperial College London, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Rok vydání: 2021
Předmět:
homogeneous nucleation
Technology
liquid–liquid transitions
Materials science
melting enthalpy and entropy
Enthalpy
Nucleation
Thermodynamics
crystallization enthalpy reduction
02 engineering and technology
010402 general chemistry
glasses
second melting temperature
01 natural sciences
Article
law.invention
[SPI]Engineering Sciences [physics]
Molecular dynamics
law
undercooling
Metastability
[CHIM]Chemical Sciences
General Materials Science
overheating
Crystallization
Supercooling
[PHYS]Physics [physics]
Microscopy
QC120-168.85
QH201-278.5
Percolation threshold
Engineering (General). Civil engineering (General)
021001 nanoscience & nanotechnology
TK1-9971
0104 chemical sciences
Descriptive and experimental mechanics
Electrical engineering. Electronics. Nuclear engineering
melting entropy reduction
TA1-2040
0210 nano-technology
Glass transition
Zdroj: Materials
Materials, MDPI, 2021, 14 (21), pp.6509. ⟨10.3390/ma14216509⟩
Materials, Vol 14, Iss 6509, p 6509 (2021)
Volume 14
Issue 21
ISSN: 1996-1944
DOI: 10.3390/ma14216509
Popis: A second melting temperature occurs at a temperature Tn+ higher than Tm in glass-forming melts after heating them from their glassy state. The melting entropy is reduced or increased depending on the thermal history and on the presence of antibonds or bonds up to Tn+. Recent MD simulations show full melting at Tn+ = 1.119Tm for Zr, 1.126Tm for Ag, 1.219Tm for Fe and 1.354Tm for Cu. The non-classical homogeneous nucleation model applied to liquid elements is based on the increase of the Lindemann coefficient with the heating rate. The glass transition at Tg and the nucleation temperatures TnG of glacial phases are successfully predicted below and above Tm. The glass transition temperature Tg increases with the heating rate up to Tn+. Melting and crystallization of glacial phases occur with entropy and enthalpy reductions. A universal law relating Tn+ and TnG around Tm shows that TnG cannot be higher than 1.293Tm for Tn+= 1.47Tm. The enthalpies and entropies of glacial phases have singular values, corresponding to the increase of percolation thresholds with Tg and TnG above the Scher and Zallen invariant at various heating and cooling rates. The G-phases are metastable up to Tn+ because the antibonds are broken by homogeneous nucleation of bonds.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje