Influence of the physiological condition of bivalve recruits on their post-settlement dispersal potential

Autor: Jean-Bruno Nadalini, Philippe Miner, Frédéric Olivier, Réjean Tremblay, Martin Forêt, Gesche Winkler
Přispěvatelé: Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Université du Québec à Rimouski (UQAR), Station de Biologie Marine de Concarneau, Direction générale déléguée à la Recherche, à l’Expertise, à la Valorisation et à l’Enseignement-Formation (DGD.REVE), Muséum national d'Histoire naturelle (MNHN)-Muséum national d'Histoire naturelle (MNHN), Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Marine Ecology Progress Series
Marine Ecology Progress Series, Inter Research, 2020, 636, pp.77-89. ⟨10.3354/meps13223⟩
ISSN: 0171-8630
1616-1599
Popis: Secondary dispersal (= migration) of bivalves occurs after metamorphosis and is a key recruitment process that can radically change patterns of primary settlement. An example of secondary dispersal is active migration behavior of bivalve recruits such as in bysso-pelagic drift. We hypothesize that these active migrations represent an energy cost for recruits and that the ability to actively migrate will depend upon the recruit’s physiological profile (quantity and quality of energy reserves). In lab experiments, we hatched 4 batches of recruits ofVenus verrucosawith different physiological profiles by varying rearing temperature and diet composition. We then introduced these recruits into a fall velocity tube (5 m height) to estimate their vertical fall velocity as a proxy of their dispersal potential: slower fall velocity implies enhanced dispersal potential. We also compared alive vs. passive (dead) recruits to assess behavioral differences. Fall velocity increased logarithmically with recruit volume for each treatment, and no differences between active and passive individuals were observed for batches reared at 20°C with a mixture ofTisochrysis luteaandChaetoceros gracilis. By contrast, active recruits in 2 other treatments (T. luteaat 20°C and a mix ofC. gracilisandT. luteaat 15°C) significantly decreased their fall velocity regardless of their volume. Moreover, the ability of recruits to control their fall velocity by their behavior was correlated with triglyceride content. Recruits with the highest energy reserves had the greatest capacity to decrease their fall velocity, which suggests a major role of physiological conditions on potential secondary dispersal. We also used a benthic flume to test the substrate selection ability of recruits depending on their physiological profile and found no differences between physiologically different batches. However,V. verrucosarecruits preferred fine sediments, unlike adults, which live mainly in coarse sediment habitats; such difference in substrate preference suggests potential secondary migrations between nursery and adult areas.
Databáze: OpenAIRE