BAYESIAN ANALYSIS OF COSMIC RAY PROPAGATION: EVIDENCE AGAINST HOMOGENEOUS DIFFUSION

Autor: Aaron C. Vincent, T. A. Porter, Michael P. Hobson, Gudlaugur Johannesson, Elena Orlando, Roberto Ruiz de Austri, Igor V. Moskalenko, Roberto Trotta, Farhan Feroz, P. B. Graff, Andrew W. Strong
Přispěvatelé: Johannesson, G, de Austri, Rr, Vincent, Ac, Moskalenko, Iv, Orlando, E, Porter, Ta, Strong, Aw, Trotta, R, Feroz, F, Graff, P, Hobson, Mp, Science and Technology Facilities Council (STFC), Science and Technology Facilities Council [2006-2012], Science and Technology Facilities Council
Rok vydání: 2021
Předmět:
astroparticle physics
cosmic rays
diffusion
Galaxy: general
ISM: general
methods: statistical
Parameter space
01 natural sciences
Diffusion (business)
010303 astronomy & astrophysics
cosmic ray
Physics
High Energy Astrophysical Phenomena (astro-ph.HE)
astro-ph.HE
0306 Physical Chemistry (incl. Structural)
SUPERNOVA-REMNANTS
general [ISM]
SECONDARY
ELEMENTAL COMPOSITION
astroparticle physic
Physical Sciences
0202 Atomic
Molecular
Nuclear
Particle and Plasma Physics

Astrophysics - High Energy Astrophysical Phenomena
Bar (music)
astro-ph.GA
Bayesian probability
statistical [methods]
FOS: Physical sciences
Cosmic ray
FERMI-LAT OBSERVATIONS
Astronomy & Astrophysics
Article
Settore FIS/05 - Astronomia e Astrofisica
0103 physical sciences
0201 Astronomical and Space Sciences
Calibration
ENERGY-SPECTRA
Nested sampling algorithm
general [Galaxy]
Science & Technology
NUCLEI
010308 nuclear & particles physics
CONSTRAINTS
Astronomy and Astrophysics
Astrophysics - Astrophysics of Galaxies
Computational physics
Interstellar medium
MODEL
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
SOLAR MODULATION
EMISSION
Zdroj: Astrophys J
Astrophysical journal, 2016, Vol.824(1), pp.16 [Peer Reviewed Journal]
ISSN: 0004-637X
Popis: We present the results of the most complete ever scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine learning package. This is the first such study to separate out low-mass isotopes ($p$, $\bar p$ and He) from the usual light elements (Be, B, C, N, O). We find that the propagation parameters that best fit $p$, $\bar p$, He data are significantly different from those that fit light elements, including the B/C and $^{10}$Be/$^9$Be secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.
Comment: 20 pages, 10 figures, 5 tables. v2 accepted for publication in ApJ
Databáze: OpenAIRE