TOWARDS AN EFFICIENT TRAFFIC CONGESTION PREDICTION METHOD BASED ON NEURAL NETWORKS AND BIG GPS DATA
Autor: | Adel M. Alimi, Wiam Elleuch, Ali Wali |
---|---|
Rok vydání: | 2019 |
Předmět: |
050210 logistics & transportation
General Computer Science Artificial neural network Computer science Applied Mathematics General Chemical Engineering 05 social sciences General Engineering 02 engineering and technology Transport engineering Traffic congestion lcsh:TA1-2040 Gps data 0502 economics and business 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing neural network traffic congestion prediction big gps traces lcsh:Engineering (General). Civil engineering (General) |
Zdroj: | International Islamic University Malaysia Engineering Journal, Vol 20, Iss 1, Pp 108-118 (2019) |
ISSN: | 2289-7860 1511-788X |
DOI: | 10.31436/iiumej.v20i1.997 |
Popis: | The prediction of accurate traffic information such as speed, travel time, and congestion state is a very important task in many Intelligent Transportations Systems (ITS) applications. However, the dynamic changes in traffic conditions make this task harder. In fact, the type of road, such as the freeways and the highways in urban regions, can influence the driving speeds and the congestion state of the corresponding road. In this paper, we present a NNs-based model to predict the congestion state in roads. Our model handles new inputs and distinguishes the dynamic traffic patterns in two different types of roads: highways and freeways. The model has been tested using a big GPS database gathered from vehicles circulating in Tunisia. The NNs-based model has shown their capabilities of detecting the nonlinearity of dynamic changes and different patterns of roads compared to other nonparametric techniques from the literature. ABSTRAK: Ramalan maklumat trafik yang tepat seperti kelajuan, masa perjalanan dan keadaan kesesakan adalah tugas yang sangat penting dalam banyak aplikasi Sistem Pengangkutan Pintar (ITS). Walau bagaimanapun, perubahan keadaan lalu lintas yang dinamik menjadikan tugas ini menjadi lebih sukar. Malah, jenis jalan raya, seperti jalan raya dan lebuh raya di kawasan bandar, boleh mempengaruhi kelajuan memandu dan keadaan kesesakan jalan yang sama. Dalam makalah ini, kami membentangkan model berasaskan NN untuk meramalkan keadaan kesesakan di jalan raya. Model kami mengendalikan input baru dan membezakan corak trafik dinamik dalam dua jenis jalan raya yang lebuh raya dan jalan raya. Model ini telah diuji menggunakan pangkalan data GPS yang besar yang dikumpulkan dari kenderaan yang beredar di Tunisia. Model berasaskan NNs telah menunjukkan keupayaan mereka untuk mengesan ketiadaan perubahan dinamik dan pola jalan yang berbeza berbanding dengan teknik nonparametrik yang lain dari kesusasteraan. |
Databáze: | OpenAIRE |
Externí odkaz: |