High-fidelity quantum driving

Autor: Nicola Malossi, Vittorio Giovannetti, Paul Huillery, Ennio Arimondo, Matthieu Viteau, Rosario Fazio, Oliver Morsch, Mark G. Bason, Donatella Ciampini, Riccardo Mannella
Přispěvatelé: BASON M., G, Viteau, M, Malossi, N, Huillery, P, Arimondo, E, Ciampini, D, Fazio, Rosario, Giovannetti, Vittorio, Mannella, R, Morsch, O.
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Nature physics
8 (2012): 147–152. doi:10.1038/NPHYS2170
info:cnr-pdr/source/autori:Bason Mark G. [ 1 ] ; Viteau Matthieu [ 1 ] ; Malossi Nicola [ 2 ] ; Huillery Paul [ 1,3 ] ; Arimondo Ennio [ 1,2 ] ; Ciampini Donatella [ 1,2 ] ; Fazio Rosario [ 5 ] ; Giovannetti Vittorio [ 5 ] ; Mannella Riccardo [ 4 ] ; Morsch Oliver [ 1 ]/titolo:High-fidelity quantum driving/doi:10.1038%2FNPHYS2170/rivista:Nature physics (Print)/anno:2012/pagina_da:147/pagina_a:152/intervallo_pagine:147–152/volume:8
Bason, M G, Viteau, M, Malossi, N, Huillery, P, Arimondo, E, Ciampini, D, Fazio, R, Giovanetti, V, Mannella, R & Morsch, O 2011, ' High-fidelity quantum driving ', Nature Physics, vol. 8, pp. 147-152 . https://doi.org/10.1038/nphys2170
Popis: The ability to accurately control a quantum system is a fundamental requirement in many areas of modern science such as quantum information processing and the coherent manipulation of molecular systems. It is usually necessary to realize these quantum manipulations in the shortest possible time in order to minimize decoherence, and with a large stability against fluctuations of the control parameters. While optimizing a protocol for speed leads to a natural lower bound in the form of the quantum speed limit rooted in the Heisenberg uncertainty principle, stability against parameter variations typically requires adiabatic following of the system. The ultimate goal in quantum control is to prepare a desired state with 100% fidelity. Here we experimentally implement optimal control schemes that achieve nearly perfect fidelity for a two-level quantum system realized with Bose-Einstein condensates in optical lattices. By suitably tailoring the time-dependence of the system's parameters, we transform an initial quantum state into a desired final state through a short-cut protocol reaching the maximum speed compatible with the laws of quantum mechanics. In the opposite limit we implement the recently proposed transitionless superadiabatic protocols, in which the system perfectly follows the instantaneous adiabatic ground state. We demonstrate that superadiabatic protocols are extremely robust against parameter variations, making them useful for practical applications.
17 pages, 4 figures
Databáze: OpenAIRE